The search functionality is under construction.

Keyword Search Result

[Keyword] ternary decision diagram(4hit)

1-4hit
  • A Quaternary Decision Diagram Machine: Optimization of Its Code

    Tsutomu SASAO  Hiroki NAKAHARA  Munehiro MATSUURA  Yoshifumi KAWAMURA  Jon T. BUTLER  

     
    INVITED PAPER

      Vol:
    E93-D No:8
      Page(s):
    2026-2035

    This paper first reviews the trends of VLSI design, focusing on the power dissipation and programmability. Then, we show the advantage of Quarternary Decision Diagrams (QDDs) in representing and evaluating logic functions. That is, we show how QDDs are used to implement QDD machines, which yield high-speed implementations. We compare QDD machines with binary decision diagram (BDD) machines, and show a speed improvement of 1.28-2.02 times when QDDs are chosen. We consider 1-and 2-address BDD machines, and 3- and 4-address QDD machines, and we show a method to minimize the number of instructions.

  • On Properties of Kleene TDDs

    Yukihiro IGUCHI  Tsutomu SASAO  Munehiro MATSUURA  

     
    PAPER-Logic Simulation and Logic Optimization

      Vol:
    E81-D No:7
      Page(s):
    716-723

    Three types of ternary decision diagrams (TDDs) are considered: AND -TDDs, EXOR-TDDs, and Kleene-TDDs. Kleene-TDDs are useful for logic simulation in the presence of unknown inputs. Let N(BDD:f), N(AND-TDD:f), and N(EXOR-TDD:f) be the number of non-terminal nodes in the BDD, the AND-TDD, and the EXOR-TDD for f, respectively. Let N(Kleene-TDD:) be the number of non-terminal nodes in the Kleene -TDD for , where is the regular ternary function corresponding to f. Then N(BDD:f) N(TDD:f). For parity functions, N(BDD:f)=N(AND-TDD:f)=N(EXOR-TDD:f)=N(Kleene-TDD:). For unate functions,N(BDD:f)=N(AND-TDD:f). The sizes of Kleene-TDDs are O(3n/n), and O(n3) for arbitrary functions, and symmetric functions, respectively. There exist a 2n-variable function, where Kleene-TDDs require O(n) nodes with the best order, while O(3n) nodes in the worst order.

  • Computational Power of Nondeterministic Ordered Binary Decision Diagrams and Their Subclasses

    Kazuyoshi TAKAGI  Koyo NITTA  Hironori BOUNO  Yasuhiko TAKENAGA  Shuzo YAJIMA  

     
    PAPER

      Vol:
    E80-A No:4
      Page(s):
    663-669

    Ordered Binary Decision Diagrams (OBDDs) are graph-based representations of Boolean functions which are widely used because of their good properties. In this paper, we introduce nondeterministic OBDDs (NOBDDs) and their restricted forms, and evaluate their expressive power. In some applications of OBDDs, canonicity, which is one of the good properties of OBDDs, is not necessary. In such cases, we can reduce the required amount of storage by using OBDDs in some non-canonical form. A class of NOBDDs can be used as a non-canonical form of OBDDs. In this paper, we focus on two particular methods which can be regarded as using restricted forms of NOBDDs. Our aim is to show how the size of OBDDs can be reduced in such forms from theoretical point of view. Firstly, we consider a method to solve satisfiability problem of combinational circuits using the structure of circuits as a key to reduce the NOBDD size. We show that the NOBDD size is related to the cutwidth of circuits. Secondly, we analyze methods that use OBDDs to represent Boolean functions as sets of product terms. We show that the class of functions treated feasibly in this representation strictly contains that in OBDDs and contained by that in NOBDDs.

  • On Ternary Cellular Arrays Designed from Ternary Decision Diagrams

    Naotake KAMIURA  Hidetoshi SATOH  Yutaka HATA  Kazuhara YAMATO  

     
    PAPER-Computer Hardware and Design

      Vol:
    E78-D No:4
      Page(s):
    326-335

    In this paper, we propose a method to design ternary cellular arrays by using Ternary Decision Diagrams (TDD's). Our cellular array has a rectangular structure composed of ternary switch cells. The ternary functions represented by TDD's are realized by mapping the TDD's to the arrays directly. That is, both the nodes and the edges in the TDD are realized by some sets of the cells. Since TDD's can represent easily multiple-output functions without large memory requirements, our arrays are wuitable for the realization of multiple-output functions. To evaluate our method, we apply our method to some benchmark circuits, and compare our arrays with the ternary PLA's. The experimental results show that our arrays have the advantage for their sizes, especially in the realization of symmetric functions. The results also clarify that the size of our arrays depends on the size of TDD's.