The search functionality is under construction.

Keyword Search Result

[Keyword] tight security(10hit)

1-10hit
  • More Efficient Two-Round Multi-Signature Scheme with Provably Secure Parameters for Standardized Elliptic Curves Open Access

    Kaoru TAKEMURE  Yusuke SAKAI  Bagus SANTOSO  Goichiro HANAOKA  Kazuo OHTA  

     
    PAPER-Cryptography and Information Security

      Pubricized:
    2023/10/05
      Vol:
    E107-A No:7
      Page(s):
    966-988

    The existing discrete-logarithm-based two-round multi-signature schemes without using the idealized model, i.e., the Algebraic Group Model (AGM), have quite large reduction loss. This means that an implementation of these schemes requires an elliptic curve (EC) with a very large order for the standard 128-bit security when we consider concrete security. Indeed, the existing standardized ECs have orders too small to ensure 128-bit security of such schemes. Recently, Pan and Wagner proposed two two-round schemes based on the Decisional Diffie-Hellman (DDH) assumption (EUROCRYPT 2023). For 128-bit security in concrete security, the first scheme can use the NIST-standardized EC P-256 and the second can use P-384. However, with these parameter choices, they do not improve the signature size and the communication complexity over the existing non-tight schemes. Therefore, there is no two-round scheme that (i) can use a standardized EC for 128-bit security and (ii) has high efficiency. In this paper, we construct a two-round multi-signature scheme achieving both of them from the DDH assumption. We prove that an EC with at least a 321-bit order is sufficient for our scheme to ensure 128-bit security. Thus, we can use the NIST-standardized EC P-384 for 128-bit security. Moreover, the signature size and the communication complexity per one signer of our proposed scheme under P-384 are 1152 bits and 1535 bits, respectively. These are most efficient among the existing two-round schemes without using the AGM including Pan-Wagner’s schemes and non-tight schemes which do not use the AGM. Our experiment on an ordinary machine shows that for signing and verification, each can be completed in about 65 ms under 100 signers. This shows that our scheme has sufficiently reasonable running time in practice.

  • A New Pairing-Based Two-Round Tightly-Secure Multi-Signature Scheme with Key Aggregation

    Rikuhiro KOJIMA  Jacob C. N. SCHULDT  Goichiro HANAOKA  

     
    PAPER

      Pubricized:
    2023/09/20
      Vol:
    E107-A No:3
      Page(s):
    193-202

    Multi-signatures have seen renewed interest due to their application to blockchains, e.g., BIP 340 (one of the Bitcoin improvement proposals), which has triggered the proposals of several new schemes with improved efficiency. However, many previous works have a “loose” security reduction (a large gap between the difficulty of the security assumption and breaking the scheme) or depend on strong idealized assumptions such as the algebraic group model (AGM). This makes the achieved level of security uncertain when instantiated in groups typically used in practice, and it becomes unclear for developers how secure a given scheme is for a given choice of security parameters. Thus, this leads to the question “what kind of schemes can we construct that achieves tight security based on standard assumptions?”. In this paper, we show a simple two-round tightly-secure pairing-based multi-signature scheme based on the computation Diffie-Hellman problem in the random oracle model. This proposal is the first two-round multi-signature scheme that achieves tight security based on a computational assumption and supports key aggregation. Furthermore, our scheme reduce the signature bit size by 19% compared with the shortest existing tightly-secure DDH-based multi-signature scheme. Moreover, we implemented our scheme in C++ and confirmed that it is efficient in practice; to complete the verification takes less than 1[ms] with a total (computational) signing time of 13[ms] for under 100 signers. The source code of the implementation is published as OSS.

  • Tighter Reduction for Lattice-Based Multisignature Open Access

    Masayuki FUKUMITSU  Shingo HASEGAWA  

     
    PAPER-Cryptography and Information Security

      Pubricized:
    2021/05/25
      Vol:
    E104-A No:12
      Page(s):
    1685-1697

    Multisignatures enable multiple users to sign a message interactively. Many instantiations are proposed for multisignatures, however, most of them are quantum-insecure, because these are based on the integer factoring assumption or the discrete logarithm assumption. Although there exist some constructions based on the lattice problems, which are believed to be quantum-secure, their security reductions are loose. In this paper, we aim to improve the security reduction of lattice-based multisignature schemes concerning tightness. Our basic strategy is combining the multisignature scheme proposed by El Bansarkhani and Sturm with the lattice-based signature scheme by Abdalla, Fouque, Lyubashevsky, and Tibouchi which has a tight security reduction from the Ring-LWE (Ring Learning with Errors) assumption. Our result shows that proof techniques for standard signature schemes can be applied to multisignature schemes, then we can improve the polynomial loss factor concerning the Ring-LWE assumption. Our second result is to address the problem of security proofs of existing lattice-based multisignature schemes pointed out by Damgård, Orlandi, Takahashi, and Tibouchi. We employ a new cryptographic assumption called the Rejected-Ring-LWE assumption, to complete the security proof.

  • Practical Public-Key Encryption Scheme Tightly Secure in the Random Oracle Model

    Yusuke SAKAI  Goichiro HANAOKA  

     
    PAPER

      Vol:
    E103-A No:1
      Page(s):
    165-172

    Chosen-ciphertext security is a central goal in designing a secure public-key encryption scheme, and it is also important that the chosen-ciphertext security is tightly reduced to some well-established hard problem. Moreover, it is more important to have a tight reduction in the multi-user multi-challenge setting, since a tight security reduction in the single-user single-challenge setting generally does not imply a tight reduction to the multi-user multi-challenge setting. We propose the first fully tightly secure and practical public-key encryption scheme which is chosen-ciphertext secure in the multi-user multi-challenge setting in the random oracle model. The scheme is proven secure under the decisional Diffie-Hellman assumption in a pairing-free group. The ciphertext overhead of our scheme is two group elements and two exponents.

  • A Constant-Size Signature Scheme with a Tighter Reduction from the CDH Assumption Open Access

    Kaisei KAJITA  Kazuto OGAWA  Eiichiro FUJISAKI  

     
    PAPER

      Vol:
    E103-A No:1
      Page(s):
    141-149

    We present a constant-size signature scheme under the CDH assumption. It has a tighter security reduction than any other constant-size signature scheme with a security reduction to solving some intractable search problems. Hofheinz, Jager, and Knapp (PKC 2012) presented a constant-size signature scheme under the CDH assumption with a reduction loss of O(q), where q is the number of signing queries. They also proved that the reduction loss of O(q) is optimal in a black-box security proof. To the best of our knowledge, no constant-size signature scheme has been proposed with a tighter reduction (to the hardness of a search problem) than that proposed by Hofheinz et al., even if it is not re-randomizable. We remark that our scheme is not re-randomizable. We achieve the reduction loss of O(q/d), where d is the number of group elements in a public key.

  • Opcount: A Pseudo-Code Performance Estimation System for Pairing-Based Cryptography Open Access

    Masayuki ABE  Fumitaka HOSHINO  Miyako OHKUBO  

     
    PAPER-Cryptography and Information Security

      Vol:
    E102-A No:9
      Page(s):
    1285-1292

    We propose a simple framework for evaluating the performance of pairing-based cryptographic schemes for various types of curves and parameter settings. The framework, which we call ‘Opcount’, enables the selection of an appropriate curve and parameters by estimating the performance of a cryptographic scheme from a pseudo-code describing the cryptographic scheme and an implementation-information database that records the performance of basic operations in curves targeted for evaluation. We apply Opcount to evaluate and compare the computational efficiency of several structure-preserving signature schemes that involve tens of pairing products in their signature verification. In addition to showing the usefulness of Opcount, our experiments also reveal the overlooked importance of taking account of the properties of underlying curves when optimizing computations and demonstrate the impact of tight security reductions.

  • New Security Proof for the Boneh-Boyen IBE: Tight Reduction in Unbounded Multi-Challenge Security

    Nuttapong ATTRAPADUNG  Goichiro HANAOKA  Shota YAMADA  

     
    PAPER

      Vol:
    E100-A No:9
      Page(s):
    1882-1890

    Identity-based encryption (IBE) is an advanced form of public key encryption and one of the most important cryptographic primitives. Of the many constructions of IBE schemes, the one proposed by Boneh and Boyen (in Eurocrypt 2004) is quite important from both practical and theoretical points of view. The scheme was standardized as IEEE P1363.3 and is the basis for many subsequent constructions. In this paper, we investigate its multi-challenge security, which means that an adversary is allowed to query challenge ciphertexts multiple times rather than only once. Since single-challenge security implies multi-challenge security, and since Boneh and Boyen provided a security proof for the scheme in the single-challenge setting, the scheme is also secure in the multi-challenge setting. However, this reduction results in a large security loss. Instead, we give tight security reduction for the scheme in the multi-challenge setting. Our reduction is tight even if the number of challenge queries is not fixed in advance (that is, the queries are unbounded). Unfortunately, we are only able to prove the security in a selective setting and rely on a non-standard parameterized assumption. Nevertheless, we believe that our new security proof is of interest and provides new insight into the security of the Boneh-Boyen IBE scheme.

  • Efficient (Hierarchical) Inner-Product Encryption Tightly Reduced from the Decisional Linear Assumption

    Tatsuaki OKAMOTO  Katsuyuki TAKASHIMA  

     
    PAPER-Public Key Based Protocols

      Vol:
    E96-A No:1
      Page(s):
    42-52

    This paper proposes an inner-product encryption (IPE) scheme, which achieves selectively fully-attribute-hiding security in the standard model almost tightly reduced from the decisional linear (DLIN) assumption, and whose ciphertext is almost the shortest among the existing (weakly/fully) attribute-hiding IPE schemes, i.e., it consists of n+4 elements of G and 1 element of GT for a prime-order symmetric bilinear group (G, GT), where n is the dimension of attribute/predicate vectors. We also present a variant of the proposed IPE scheme that enjoys shorter public and secret keys with preserving the security. A hierarchical IPE (HIPE) scheme can be realized that has short ciphertexts and selectively fully-attribute-hiding security almost tightly reduced from the DLIN assumption.

  • Practical Hierarchical Identity Based Encryption Scheme without Random Oracles

    Xiaoming HU  Shangteng HUANG  Xun FAN  

     
    PAPER-Cryptography and Information Security

      Vol:
    E92-A No:6
      Page(s):
    1494-1499

    Recently, Au et al. proposed a practical hierarchical identity-based encryption (HIBE) scheme and a hierarchical identity-based signature (HIBS) scheme. In this paper, we point out that there exists security weakness both for their HIBE and HIBS scheme. Furthermore, based on q-ABDHE, we present a new HIBE scheme which is proved secure in the standard model and it is also efficient. Compared with all previous HIBE schemes, ciphertext size as well as decryption cost are independent of the hierarchy depth. Ciphertexts in our HIBE scheme are always just four group elements and decryption requires only two bilinear map computations.

  • Efficient Identity-Based Encryption with Tight Security Reduction

    Nuttapong ATTRAPADUNG  Jun FURUKAWA  Takeshi GOMI  Goichiro HANAOKA  Hideki IMAI  Rui ZHANG  

     
    PAPER

      Vol:
    E90-A No:9
      Page(s):
    1803-1813

    In this paper, we present an efficient variant of the Boneh-Franklin scheme that achieves a tight security reduction. Our scheme is basically an IBE scheme under two keys, one of which is randomly chosen and given to the user. It can be viewed as a continuation of an idea introduced by Katz and Wang; however, unlike the Katz-Wang variant, our scheme is quite efficient, as its ciphertext size is roughly comparable to that of the original full Boneh-Franklin scheme. The security of our scheme can be based on either the gap bilinear Diffie-Hellman (GBDH) or the decisional bilinear Diffie-Hellman (DBDH) assumptions.