1-2hit |
Wancheng ZHANG Katsuhiko NISHIGUCHI Yukinori ONO Akira FUJIWARA Hiroshi YAMAGUCHI Hiroshi INOKAWA Yasuo TAKAHASHI Nan-Jian WU
A single-electron turnstile and electrometer circuit was fabricated on a silicon-on-insulator substrate. The turnstile, which is operated by opening and closing two metal-oxide-semiconductor field-effect transistors (MOSFETs) alternately, allows current quantization at 20 K due to single-electron transfer. Another MOSFET is placed at the drain side of the turnstile to form an electron storage island. Therefore, one-by-one electron entrance into the storage island from the turnstile can be detected as an abrupt change in the current of the electrometer, which is placed near the storage island and electrically coupled to it. The correspondence between the quantized current and the single-electron counting was confirmed.
Masaharu KIRIHARA Kenji TANIGUCHI
The basic operation characteristics of an asymmetric turnstile which transfers each electron one by one in one direction is described. A novel single electron counter circuit consisting of the asymmetric turnstiles, a load capacitor and an inverter which counts the number of high inputs is proposed. Monte Carlo circuit simulations reveal that the gate clock time of the counter circuit should be long enough to achieve allowable minimum error rate. The counter circuit implementing asymmetric single electron turnstiles is demonstrated to be applicable to a noise reduction system, a Winner-Take-All circuit and an artificial neuron circuit.