Water desorption from interlayer dielectric, spin-on-glass and SiO2 film deposited with tetraethylorthosilicate and O3, was controlled in order to reduce MOSFET hot-carrier degradation by using plasma SiO2 film as a water blocking layer. Two kinds of plasma SiO2 film were used in this study: SiH4 plasma SiO2 film deposited with SiH4 and N2O, and TEOS plasma SiO2 film deposited with TEOS and O2. Thermal desorption spectroscopy was used to study water desorption. Reduction of water desorption was obtained using plasma SiO2 film with water blocking ability; this reduction of water desorption resulted in suppression of the MOSFET hot-carrier degradation. The water blocking ability was obtained by low pressure deposition for SiH4 plasma SiO2 and low flow rate ratio of TEOS to O2 deposition for TEOS plasma SiO2. Water absorption studies of plasma SiO2 film using Fourier transform infrared spectroscopy revealed that water blocking ability is associated with small amount of water absorption both in SiH4 plasma SiO2 film and in TEOS plasma SiO2 film. Consequently, it is considered that the water blocking ability, as well as water absorption, of plasma SiO2 film depends on porosity.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Kimiaki SHIMOKAWA, Takashi USAMI, Masaki YOSHIMARU, "Water Desorption Control of Interlayer Dielectrics to Reduce MOSFET Hot Carrier Degradation" in IEICE TRANSACTIONS on Electronics,
vol. E77-C, no. 3, pp. 473-479, March 1994, doi: .
Abstract: Water desorption from interlayer dielectric, spin-on-glass and SiO2 film deposited with tetraethylorthosilicate and O3, was controlled in order to reduce MOSFET hot-carrier degradation by using plasma SiO2 film as a water blocking layer. Two kinds of plasma SiO2 film were used in this study: SiH4 plasma SiO2 film deposited with SiH4 and N2O, and TEOS plasma SiO2 film deposited with TEOS and O2. Thermal desorption spectroscopy was used to study water desorption. Reduction of water desorption was obtained using plasma SiO2 film with water blocking ability; this reduction of water desorption resulted in suppression of the MOSFET hot-carrier degradation. The water blocking ability was obtained by low pressure deposition for SiH4 plasma SiO2 and low flow rate ratio of TEOS to O2 deposition for TEOS plasma SiO2. Water absorption studies of plasma SiO2 film using Fourier transform infrared spectroscopy revealed that water blocking ability is associated with small amount of water absorption both in SiH4 plasma SiO2 film and in TEOS plasma SiO2 film. Consequently, it is considered that the water blocking ability, as well as water absorption, of plasma SiO2 film depends on porosity.
URL: https://global.ieice.org/en_transactions/electronics/10.1587/e77-c_3_473/_p
Copy
@ARTICLE{e77-c_3_473,
author={Kimiaki SHIMOKAWA, Takashi USAMI, Masaki YOSHIMARU, },
journal={IEICE TRANSACTIONS on Electronics},
title={Water Desorption Control of Interlayer Dielectrics to Reduce MOSFET Hot Carrier Degradation},
year={1994},
volume={E77-C},
number={3},
pages={473-479},
abstract={Water desorption from interlayer dielectric, spin-on-glass and SiO2 film deposited with tetraethylorthosilicate and O3, was controlled in order to reduce MOSFET hot-carrier degradation by using plasma SiO2 film as a water blocking layer. Two kinds of plasma SiO2 film were used in this study: SiH4 plasma SiO2 film deposited with SiH4 and N2O, and TEOS plasma SiO2 film deposited with TEOS and O2. Thermal desorption spectroscopy was used to study water desorption. Reduction of water desorption was obtained using plasma SiO2 film with water blocking ability; this reduction of water desorption resulted in suppression of the MOSFET hot-carrier degradation. The water blocking ability was obtained by low pressure deposition for SiH4 plasma SiO2 and low flow rate ratio of TEOS to O2 deposition for TEOS plasma SiO2. Water absorption studies of plasma SiO2 film using Fourier transform infrared spectroscopy revealed that water blocking ability is associated with small amount of water absorption both in SiH4 plasma SiO2 film and in TEOS plasma SiO2 film. Consequently, it is considered that the water blocking ability, as well as water absorption, of plasma SiO2 film depends on porosity.},
keywords={},
doi={},
ISSN={},
month={March},}
Copy
TY - JOUR
TI - Water Desorption Control of Interlayer Dielectrics to Reduce MOSFET Hot Carrier Degradation
T2 - IEICE TRANSACTIONS on Electronics
SP - 473
EP - 479
AU - Kimiaki SHIMOKAWA
AU - Takashi USAMI
AU - Masaki YOSHIMARU
PY - 1994
DO -
JO - IEICE TRANSACTIONS on Electronics
SN -
VL - E77-C
IS - 3
JA - IEICE TRANSACTIONS on Electronics
Y1 - March 1994
AB - Water desorption from interlayer dielectric, spin-on-glass and SiO2 film deposited with tetraethylorthosilicate and O3, was controlled in order to reduce MOSFET hot-carrier degradation by using plasma SiO2 film as a water blocking layer. Two kinds of plasma SiO2 film were used in this study: SiH4 plasma SiO2 film deposited with SiH4 and N2O, and TEOS plasma SiO2 film deposited with TEOS and O2. Thermal desorption spectroscopy was used to study water desorption. Reduction of water desorption was obtained using plasma SiO2 film with water blocking ability; this reduction of water desorption resulted in suppression of the MOSFET hot-carrier degradation. The water blocking ability was obtained by low pressure deposition for SiH4 plasma SiO2 and low flow rate ratio of TEOS to O2 deposition for TEOS plasma SiO2. Water absorption studies of plasma SiO2 film using Fourier transform infrared spectroscopy revealed that water blocking ability is associated with small amount of water absorption both in SiH4 plasma SiO2 film and in TEOS plasma SiO2 film. Consequently, it is considered that the water blocking ability, as well as water absorption, of plasma SiO2 film depends on porosity.
ER -