BiCMOS circuits using a base-boost technique for low-voltage application have been proposed. These circuits can operate at supply voltages down to 1.5 V. Their power dissipation, however, is 1.5-2 times of that of the CMOS circuit. We propose a novel BiCMOS circuit dissipating less power than that of conventional circuits. A base-boost technique is a key to low-voltage operation, and a gate holding the output voltage and a depletion nMOS pre-charge transistor are also introduced to reduce the power dissipation. Results of simulations using 0.3µm BiCMOS device parameters show that base-boosted BiNMOS (BB-BiNMOS) circuit is 1.5 times faster than CMOS circuit even at 1 V and that its power dissipation is almost the same power as that of a CMOS circuit, the base-boosted BiCMOS (BB-BiCMOS) circuit is twice as fast and dissipates only 1.2 times as much power. The energy-delay product of the BB-BiCMOS circuit is smaller than that of conventional BiCMOS circuits and is about half of that of a CMOS circuit, the BB-BiCMOS circuit is thus the most promising high-speed circuits for low-voltage and low-power applications.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Kenichi OHHATA, Hiroaki NAMBU, Kazuo KANETANI, Toru MASUDA, Takeshi KUSUNOKI, Noriyuki HOMMA, "A BiCMOS Circuit Using a Base-Boost Technique for Low-Voltage, Low-Power Application" in IEICE TRANSACTIONS on Electronics,
vol. E79-C, no. 12, pp. 1658-1665, December 1996, doi: .
Abstract: BiCMOS circuits using a base-boost technique for low-voltage application have been proposed. These circuits can operate at supply voltages down to 1.5 V. Their power dissipation, however, is 1.5-2 times of that of the CMOS circuit. We propose a novel BiCMOS circuit dissipating less power than that of conventional circuits. A base-boost technique is a key to low-voltage operation, and a gate holding the output voltage and a depletion nMOS pre-charge transistor are also introduced to reduce the power dissipation. Results of simulations using 0.3µm BiCMOS device parameters show that base-boosted BiNMOS (BB-BiNMOS) circuit is 1.5 times faster than CMOS circuit even at 1 V and that its power dissipation is almost the same power as that of a CMOS circuit, the base-boosted BiCMOS (BB-BiCMOS) circuit is twice as fast and dissipates only 1.2 times as much power. The energy-delay product of the BB-BiCMOS circuit is smaller than that of conventional BiCMOS circuits and is about half of that of a CMOS circuit, the BB-BiCMOS circuit is thus the most promising high-speed circuits for low-voltage and low-power applications.
URL: https://global.ieice.org/en_transactions/electronics/10.1587/e79-c_12_1658/_p
Copy
@ARTICLE{e79-c_12_1658,
author={Kenichi OHHATA, Hiroaki NAMBU, Kazuo KANETANI, Toru MASUDA, Takeshi KUSUNOKI, Noriyuki HOMMA, },
journal={IEICE TRANSACTIONS on Electronics},
title={A BiCMOS Circuit Using a Base-Boost Technique for Low-Voltage, Low-Power Application},
year={1996},
volume={E79-C},
number={12},
pages={1658-1665},
abstract={BiCMOS circuits using a base-boost technique for low-voltage application have been proposed. These circuits can operate at supply voltages down to 1.5 V. Their power dissipation, however, is 1.5-2 times of that of the CMOS circuit. We propose a novel BiCMOS circuit dissipating less power than that of conventional circuits. A base-boost technique is a key to low-voltage operation, and a gate holding the output voltage and a depletion nMOS pre-charge transistor are also introduced to reduce the power dissipation. Results of simulations using 0.3µm BiCMOS device parameters show that base-boosted BiNMOS (BB-BiNMOS) circuit is 1.5 times faster than CMOS circuit even at 1 V and that its power dissipation is almost the same power as that of a CMOS circuit, the base-boosted BiCMOS (BB-BiCMOS) circuit is twice as fast and dissipates only 1.2 times as much power. The energy-delay product of the BB-BiCMOS circuit is smaller than that of conventional BiCMOS circuits and is about half of that of a CMOS circuit, the BB-BiCMOS circuit is thus the most promising high-speed circuits for low-voltage and low-power applications.},
keywords={},
doi={},
ISSN={},
month={December},}
Copy
TY - JOUR
TI - A BiCMOS Circuit Using a Base-Boost Technique for Low-Voltage, Low-Power Application
T2 - IEICE TRANSACTIONS on Electronics
SP - 1658
EP - 1665
AU - Kenichi OHHATA
AU - Hiroaki NAMBU
AU - Kazuo KANETANI
AU - Toru MASUDA
AU - Takeshi KUSUNOKI
AU - Noriyuki HOMMA
PY - 1996
DO -
JO - IEICE TRANSACTIONS on Electronics
SN -
VL - E79-C
IS - 12
JA - IEICE TRANSACTIONS on Electronics
Y1 - December 1996
AB - BiCMOS circuits using a base-boost technique for low-voltage application have been proposed. These circuits can operate at supply voltages down to 1.5 V. Their power dissipation, however, is 1.5-2 times of that of the CMOS circuit. We propose a novel BiCMOS circuit dissipating less power than that of conventional circuits. A base-boost technique is a key to low-voltage operation, and a gate holding the output voltage and a depletion nMOS pre-charge transistor are also introduced to reduce the power dissipation. Results of simulations using 0.3µm BiCMOS device parameters show that base-boosted BiNMOS (BB-BiNMOS) circuit is 1.5 times faster than CMOS circuit even at 1 V and that its power dissipation is almost the same power as that of a CMOS circuit, the base-boosted BiCMOS (BB-BiCMOS) circuit is twice as fast and dissipates only 1.2 times as much power. The energy-delay product of the BB-BiCMOS circuit is smaller than that of conventional BiCMOS circuits and is about half of that of a CMOS circuit, the BB-BiCMOS circuit is thus the most promising high-speed circuits for low-voltage and low-power applications.
ER -