High-frequency capacitance-voltage (C-V) characteristics of buried-channel MOS capacitors with a structure of subquarter-micron pMOS have been measured and analyzed, emphasizing transient behavior. The C-V characteristics, including transient behavior, of buried-channel MOS capacitors that have a counter-doped p layer at the surface of n substrate are very similar to those of surface-channel MOS capacitors of n substrate if the counter-doped layer is shallow enough to be fully inverted at large positive bias. As gate voltage is decreased, equilibrium capacitance for inversion (accumulation for the counter-doped layer) reaches a minimum value and then slightly increases to saturate, which is peculiar to buried-channel capacitors. The gate voltage for minimum capacitance, which has been used to estimate the threshold voltage, changes dramatically by illumination even in room light. Net doping profiles of n-type dopant can be obtained from pulsed C-V characteristics even for buried-channel capacitors. For MOS capacitors with thinner gate oxide (5 nm), steady-state C-V curve is not an equilibrium one but a deep depletion one at room temperature. This is because holes are drained away by tunneling through the thin gate oxide.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Masayasu MIYAKE, Yukio OKAZAKI, "Capacitance-Voltage Characteristics of Buried-Channel MOS Capacitors with a Structure of Subquarter-Micron pMOS" in IEICE TRANSACTIONS on Electronics,
vol. E79-C, no. 3, pp. 430-436, March 1996, doi: .
Abstract: High-frequency capacitance-voltage (C-V) characteristics of buried-channel MOS capacitors with a structure of subquarter-micron pMOS have been measured and analyzed, emphasizing transient behavior. The C-V characteristics, including transient behavior, of buried-channel MOS capacitors that have a counter-doped p layer at the surface of n substrate are very similar to those of surface-channel MOS capacitors of n substrate if the counter-doped layer is shallow enough to be fully inverted at large positive bias. As gate voltage is decreased, equilibrium capacitance for inversion (accumulation for the counter-doped layer) reaches a minimum value and then slightly increases to saturate, which is peculiar to buried-channel capacitors. The gate voltage for minimum capacitance, which has been used to estimate the threshold voltage, changes dramatically by illumination even in room light. Net doping profiles of n-type dopant can be obtained from pulsed C-V characteristics even for buried-channel capacitors. For MOS capacitors with thinner gate oxide (5 nm), steady-state C-V curve is not an equilibrium one but a deep depletion one at room temperature. This is because holes are drained away by tunneling through the thin gate oxide.
URL: https://global.ieice.org/en_transactions/electronics/10.1587/e79-c_3_430/_p
Copy
@ARTICLE{e79-c_3_430,
author={Masayasu MIYAKE, Yukio OKAZAKI, },
journal={IEICE TRANSACTIONS on Electronics},
title={Capacitance-Voltage Characteristics of Buried-Channel MOS Capacitors with a Structure of Subquarter-Micron pMOS},
year={1996},
volume={E79-C},
number={3},
pages={430-436},
abstract={High-frequency capacitance-voltage (C-V) characteristics of buried-channel MOS capacitors with a structure of subquarter-micron pMOS have been measured and analyzed, emphasizing transient behavior. The C-V characteristics, including transient behavior, of buried-channel MOS capacitors that have a counter-doped p layer at the surface of n substrate are very similar to those of surface-channel MOS capacitors of n substrate if the counter-doped layer is shallow enough to be fully inverted at large positive bias. As gate voltage is decreased, equilibrium capacitance for inversion (accumulation for the counter-doped layer) reaches a minimum value and then slightly increases to saturate, which is peculiar to buried-channel capacitors. The gate voltage for minimum capacitance, which has been used to estimate the threshold voltage, changes dramatically by illumination even in room light. Net doping profiles of n-type dopant can be obtained from pulsed C-V characteristics even for buried-channel capacitors. For MOS capacitors with thinner gate oxide (5 nm), steady-state C-V curve is not an equilibrium one but a deep depletion one at room temperature. This is because holes are drained away by tunneling through the thin gate oxide.},
keywords={},
doi={},
ISSN={},
month={March},}
Copy
TY - JOUR
TI - Capacitance-Voltage Characteristics of Buried-Channel MOS Capacitors with a Structure of Subquarter-Micron pMOS
T2 - IEICE TRANSACTIONS on Electronics
SP - 430
EP - 436
AU - Masayasu MIYAKE
AU - Yukio OKAZAKI
PY - 1996
DO -
JO - IEICE TRANSACTIONS on Electronics
SN -
VL - E79-C
IS - 3
JA - IEICE TRANSACTIONS on Electronics
Y1 - March 1996
AB - High-frequency capacitance-voltage (C-V) characteristics of buried-channel MOS capacitors with a structure of subquarter-micron pMOS have been measured and analyzed, emphasizing transient behavior. The C-V characteristics, including transient behavior, of buried-channel MOS capacitors that have a counter-doped p layer at the surface of n substrate are very similar to those of surface-channel MOS capacitors of n substrate if the counter-doped layer is shallow enough to be fully inverted at large positive bias. As gate voltage is decreased, equilibrium capacitance for inversion (accumulation for the counter-doped layer) reaches a minimum value and then slightly increases to saturate, which is peculiar to buried-channel capacitors. The gate voltage for minimum capacitance, which has been used to estimate the threshold voltage, changes dramatically by illumination even in room light. Net doping profiles of n-type dopant can be obtained from pulsed C-V characteristics even for buried-channel capacitors. For MOS capacitors with thinner gate oxide (5 nm), steady-state C-V curve is not an equilibrium one but a deep depletion one at room temperature. This is because holes are drained away by tunneling through the thin gate oxide.
ER -