The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] doping profile(3hit)

1-3hit
  • Analyses on Current Characteristics of 3-D MOSFET Determined by Junction Doping Profiles for Nonvolatile Memory Devices

    Seongjae CHO  Jang-Gn YUN  Il Han PARK  Jung Hoon LEE  Jong Pil KIM  Jong-Duk LEE  Hyungcheol SHIN  Byung-Gook PARK  

     
    PAPER-Novel MOSFET Structures

      Vol:
    E90-C No:5
      Page(s):
    988-993

    One of 3-D devices to achieve high density arrays was adopted in this study, where source and drain junctions are formed along the silicon fin. The screening by adjacent high fins for large sensing margin makes it hard to ion-implant with high angle so that vertical ion implantation is inevitable. In this study, the dependency of current characteristics on doping profiles is investigated by 3-D numerical analysis. The position of concentration peak and the doping gradient are varied to look into the effects on driving currents. Through these analyses, the optimum condition of ion implantation for 3-D devices is estimated.

  • Inverse Modeling and Its Application to MOSFET Channel Profile Extraction

    Hirokazu HAYASHI  Hideaki MATSUHASHI  Koichi FUKUDA  Kenji NISHI  

     
    INVITED PAPER

      Vol:
    E82-C No:6
      Page(s):
    862-869

    We propose a new inverse modeling method to extract 2D channel dopant profile in an MOSFET. The profile is extracted from threshold voltage (Vth) of MOSFETs with a series of gate lengths. The uniqueness of the extracted channel and drain profile is confirmed through test simulations. The extracted profile of actual 0.1 µm nMOSFETs explains reverse short channel effects (RSCE) of threshold voltage dependent on gate length including substrate bias dependence.

  • Capacitance-Voltage Characteristics of Buried-Channel MOS Capacitors with a Structure of Subquarter-Micron pMOS

    Masayasu MIYAKE  Yukio OKAZAKI  

     
    PAPER-Semiconductor Materials and Devices

      Vol:
    E79-C No:3
      Page(s):
    430-436

    High-frequency capacitance-voltage (C-V) characteristics of buried-channel MOS capacitors with a structure of subquarter-micron pMOS have been measured and analyzed, emphasizing transient behavior. The C-V characteristics, including transient behavior, of buried-channel MOS capacitors that have a counter-doped p layer at the surface of n substrate are very similar to those of surface-channel MOS capacitors of n substrate if the counter-doped layer is shallow enough to be fully inverted at large positive bias. As gate voltage is decreased, equilibrium capacitance for inversion (accumulation for the counter-doped layer) reaches a minimum value and then slightly increases to saturate, which is peculiar to buried-channel capacitors. The gate voltage for minimum capacitance, which has been used to estimate the threshold voltage, changes dramatically by illumination even in room light. Net doping profiles of n-type dopant can be obtained from pulsed C-V characteristics even for buried-channel capacitors. For MOS capacitors with thinner gate oxide (5 nm), steady-state C-V curve is not an equilibrium one but a deep depletion one at room temperature. This is because holes are drained away by tunneling through the thin gate oxide.