The search functionality is under construction.

IEICE TRANSACTIONS on Electronics

A Parallel Element Model for Simulating Switching Response of Ferroelectric Capacitors

Tetsuro TAMURA, Yoshihiro ARIMOTO, Hiroshi ISHIWARA

  • Full Text Views

    0

  • Cite this

Summary :

A behavioral model for ferroelectric capacitors is developed. There are two requirements for the circuit simulation model; one is to reproduce the hysteretic behavior of the polarization under arbitrary voltage history, and the other is to describe the time dependence of polarization change. A parallel element model has been proposed to meet the first requirement. This model reproduces the minor loops of the hysteresis by assuming that the ferroelectric capacitor consists of the parallel capacitors of different polarization and coercive voltages. In order to add the function to describe the time dependence of the polarization change, we propose a method of measuring the switching response for individual parallel elements and the model which describes the response. In the measurement, the voltage applied to the capacitor is raised in two steps. After the first step, the voltage is kept at an intermediate level for a period of time, then raised again to the final level and the polarization change was recorded as a function of time. Because the capacitor elements with the coercive voltage lower than the intermediate level complete switching during the first step, the polarization change of the whole capacitor during the second step is attributed to the capacitor elements with the coercive voltage higher than the intermediate level. This procedure is repeated with changing the intermediate level, and the switching response of each capacitor element is obtained by taking the finite differences between the adjacent sets of data. The measurement on a sol-gel derived SrBi2Ta2O9 capacitor revealed that the switching time depended only on the difference between the applied voltage and the coercive voltage of each capacitor element. The time dependence of the polarization change is implemented to the model by inserting a nonlinear resistor in series with each capacitor, which reproduces the polarization switching under arbitrary voltage change without any fitting parameters.

Publication
IEICE TRANSACTIONS on Electronics Vol.E84-C No.6 pp.785-790
Publication Date
2001/06/01
Publicized
Online ISSN
DOI
Type of Manuscript
Special Section PAPER (Special Issue on Nonvolatile Memories)
Category
FeRAMs

Authors

Keyword