The search functionality is under construction.

IEICE TRANSACTIONS on Electronics

Open Access
Thermally Assisted Superconductor Transistors for Josephson-CMOS Hybrid Memories

Kyosuke SANO, Masato SUZUKI, Kohei MARUYAMA, Soya TANIGUCHI, Masamitsu TANAKA, Akira FUJIMAKI, Masumi INOUE, Nobuyuki YOSHIKAWA

  • Full Text Views

    58

  • Cite this
  • Free PDF (1.4MB)

Summary :

We have studied on thermally assisted nano-structured transistors made of superconductor ultra-thin films. These transistors potentially work as interface devices for Josephson-CMOS (complementary metal oxide semiconductor) hybrid memory systems, because they can generate a high output voltage of sub-V enough to drive a CMOS transistor. In addition, our superconductor transistors are formed with very fine lines down to several tens of nm in widths, leading to very small foot print enabling us to make large capacity hybrid memories. Our superconductor transistors are made with niobium titanium nitride (NbTiN) thin films deposited on thermally-oxidized silicon substrates, on which other superconductor circuits or semiconductor circuits can be formed. The NbTiN thickness dependence of the critical temperature and of resistivity suggest thermally activated vortex or anti-vortex behavior in pseudo-two-dimensional superconducting films plays an important role for the operating principle of the transistors. To show the potential that the transistors can drive MOS transistors, we analyzed the driving ability of the superconductor transistors with HSPICE simulation. We also showed the turn-on behavior of a MOS transistor used for readout of a CMOS memory cell experimentally. These results showed the high potential of superconductor transistors for Josephson-CMOS hybrid memories.

Publication
IEICE TRANSACTIONS on Electronics Vol.E101-C No.5 pp.370-377
Publication Date
2018/05/01
Publicized
Online ISSN
1745-1353
DOI
10.1587/transele.E101.C.370
Type of Manuscript
Special Section INVITED PAPER (Special Section on Innovative Superconducting Devices Based on New Physical Phenomena)
Category

Authors

Kyosuke SANO
  Nagoya University
Masato SUZUKI
  Nagoya University
Kohei MARUYAMA
  Nagoya University
Soya TANIGUCHI
  Nagoya University
Masamitsu TANAKA
  Nagoya University
Akira FUJIMAKI
  Nagoya University
Masumi INOUE
  Meijo University
Nobuyuki YOSHIKAWA
  Yokohama National University

Keyword