Existing byte error control codes require too many check bits if applied to a memory system that uses recent semiconductor memory chips with wide I/O data such as 16 or 32 bits, i.e., b=16 or 32. On the other hand, semiconductor memory chips are highly vulnerable to random double bit within a memory chip errors when they are used in some applications, such as satellite memory systems. Under this situation, it becomes necessary to design suitable new codes with double bit within a chip error correcting capability for computer memory systems. This correspondence proposes a class of codes called Double bit within a block Error Correcting - Single b-bit byte Error Correcting ((DEC)B-SbEC) codes where block and byte correspond to memory chip and memory sub-array data outputs, respectively. The proposed codes provide protection from both random double bit errors and single sub-array data faults. For most of the practical cases, the (DEC)B-SbEC codes presented in this correspondence have the capability of accommodating the check bits in a single dedicated memory chip.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Ganesan UMANESAN, Eiji FUJIWARA, "Single Byte Error Correcting Codes with Double Bit within a Block Error Correcting Capability for Memory Systems" in IEICE TRANSACTIONS on Fundamentals,
vol. E85-A, no. 2, pp. 513-517, February 2002, doi: .
Abstract: Existing byte error control codes require too many check bits if applied to a memory system that uses recent semiconductor memory chips with wide I/O data such as 16 or 32 bits, i.e., b=16 or 32. On the other hand, semiconductor memory chips are highly vulnerable to random double bit within a memory chip errors when they are used in some applications, such as satellite memory systems. Under this situation, it becomes necessary to design suitable new codes with double bit within a chip error correcting capability for computer memory systems. This correspondence proposes a class of codes called Double bit within a block Error Correcting - Single b-bit byte Error Correcting ((DEC)B-SbEC) codes where block and byte correspond to memory chip and memory sub-array data outputs, respectively. The proposed codes provide protection from both random double bit errors and single sub-array data faults. For most of the practical cases, the (DEC)B-SbEC codes presented in this correspondence have the capability of accommodating the check bits in a single dedicated memory chip.
URL: https://global.ieice.org/en_transactions/fundamentals/10.1587/e85-a_2_513/_p
Copy
@ARTICLE{e85-a_2_513,
author={Ganesan UMANESAN, Eiji FUJIWARA, },
journal={IEICE TRANSACTIONS on Fundamentals},
title={Single Byte Error Correcting Codes with Double Bit within a Block Error Correcting Capability for Memory Systems},
year={2002},
volume={E85-A},
number={2},
pages={513-517},
abstract={Existing byte error control codes require too many check bits if applied to a memory system that uses recent semiconductor memory chips with wide I/O data such as 16 or 32 bits, i.e., b=16 or 32. On the other hand, semiconductor memory chips are highly vulnerable to random double bit within a memory chip errors when they are used in some applications, such as satellite memory systems. Under this situation, it becomes necessary to design suitable new codes with double bit within a chip error correcting capability for computer memory systems. This correspondence proposes a class of codes called Double bit within a block Error Correcting - Single b-bit byte Error Correcting ((DEC)B-SbEC) codes where block and byte correspond to memory chip and memory sub-array data outputs, respectively. The proposed codes provide protection from both random double bit errors and single sub-array data faults. For most of the practical cases, the (DEC)B-SbEC codes presented in this correspondence have the capability of accommodating the check bits in a single dedicated memory chip.},
keywords={},
doi={},
ISSN={},
month={February},}
Copy
TY - JOUR
TI - Single Byte Error Correcting Codes with Double Bit within a Block Error Correcting Capability for Memory Systems
T2 - IEICE TRANSACTIONS on Fundamentals
SP - 513
EP - 517
AU - Ganesan UMANESAN
AU - Eiji FUJIWARA
PY - 2002
DO -
JO - IEICE TRANSACTIONS on Fundamentals
SN -
VL - E85-A
IS - 2
JA - IEICE TRANSACTIONS on Fundamentals
Y1 - February 2002
AB - Existing byte error control codes require too many check bits if applied to a memory system that uses recent semiconductor memory chips with wide I/O data such as 16 or 32 bits, i.e., b=16 or 32. On the other hand, semiconductor memory chips are highly vulnerable to random double bit within a memory chip errors when they are used in some applications, such as satellite memory systems. Under this situation, it becomes necessary to design suitable new codes with double bit within a chip error correcting capability for computer memory systems. This correspondence proposes a class of codes called Double bit within a block Error Correcting - Single b-bit byte Error Correcting ((DEC)B-SbEC) codes where block and byte correspond to memory chip and memory sub-array data outputs, respectively. The proposed codes provide protection from both random double bit errors and single sub-array data faults. For most of the practical cases, the (DEC)B-SbEC codes presented in this correspondence have the capability of accommodating the check bits in a single dedicated memory chip.
ER -