The search functionality is under construction.

Author Search Result

[Author] Chao LIAO(2hit)

1-2hit
  • Real Time Aerial Video Stitching via Sensor Refinement and Priority Scan

    Chao LIAO  Guijin WANG  Bei HE  Chenbo SHI  Yongling SHEN  Xinggang LIN  

     
    LETTER-Image Processing and Video Processing

      Vol:
    E95-D No:8
      Page(s):
    2146-2149

    The time efficiency of aerial video stitching is still an open problem due to the huge amount of input frames, which usually results in prohibitive complexities in both image registration and blending. In this paper, we propose an efficient framework aiming to stitch aerial videos in real time. Reasonable distortions are allowed as a tradeoff for acceleration. Instead of searching for globally optimized solutions, we directly refine frame positions with sensor data to compensate for the accumulative error in alignment. A priority scan method is proposed to select pixels within overlapping area into the final panorama for blending, which avoids complicated operations like weighting or averaging on pixels. Experiments show that our method can generate satisfying results at very competitive speed.

  • DSP-Based Parallel Implementation of Speeded-Up Robust Features

    Chao LIAO  Guijin WANG  Quan MIAO  Zhiguo WANG  Chenbo SHI  Xinggang LIN  

     
    LETTER-Image Recognition, Computer Vision

      Vol:
    E94-D No:4
      Page(s):
    930-933

    Robust local image features have become crucial components of many state-of-the-art computer vision algorithms. Due to limited hardware resources, computing local features on embedded system is not an easy task. In this paper, we propose an efficient parallel computing framework for speeded-up robust features with an orientation towards multi-DSP based embedded system. We optimize modules in SURF to better utilize the capability of DSP chips. We also design a compact data layout to adapt to the limited memory resource and to increase data access bandwidth. A data-driven barrier and workload balance schemes are presented to synchronize parallel working chips and reduce overall cost. The experiment shows our implementation achieves competitive time efficiency compared with related works.