1-6hit |
Quan MIAO Guijin WANG Xinggang LIN
This paper proposes a novel method for object tracking by combining local feature and global template-based methods. The proposed algorithm consists of two stages from coarse to fine. The first stage applies on-line classifiers to match the corresponding keypoints between the input frame and the reference frame. Thus a rough motion parameter can be estimated using RANSAC. The second stage employs kernel-based global representation in successive frames to refine the motion parameter. In addition, we use the kernel weight obtained during the second stage to guide the on-line learning process of the keypoints' description. Experimental results demonstrate the effectiveness of the proposed technique.
Quan MIAO Chenbo SHI Long MENG Guang CHENG
This paper proposes an on-line rigid object tracking framework via discriminative object appearance modeling and learning. Strong classifiers are combined with 2D scale-rotation invariant local features to treat tracking as a keypoint matching problem. For on-line boosting, we correspond a Gaussian mixture model (GMM) to each weak classifier and propose a GMM-based classifying mechanism. Meanwhile, self-organizing theory is applied to perform automatic clustering for sequential updating. Benefiting from the invariance of the SURF feature and the proposed on-line classifying technique, we can easily find reliable matching pairs and thus perform accurate and stable tracking. Experiments show that the proposed method achieves better performance than previously reported trackers.
Quan MIAO Guijin WANG Xinggang LIN
Object tracking is a major technique in image processing and computer vision. Tracking speed will directly determine the quality of applications. This paper presents a parallel implementation for a recently proposed scale- and rotation-invariant on-line object tracking system. The algorithm is based on NVIDIA's Graphics Processing Units (GPU) using Compute Unified Device Architecture (CUDA), following the model of single instruction multiple threads. Specifically, we analyze the original algorithm and propose the GPU-based parallel design. Emphasis is placed on exploiting the data parallelism and memory usage. In addition, we apply optimization technique to maximize the utilization of NVIDIA's GPU and reduce the data transfer time. Experimental results show that our GPGPU-based method running on a GTX480 graphics card could achieve up to 12X speed-up compared with the efficiency equivalence on an Intel E8400 3.0 GHz CPU, including I/O time.
Quan MIAO Guijin WANG Xinggang LIN
Image sequence registration has attracted increasing attention due to its significance in image processing and computer vision. In this paper, we put forward a new kernel based image registration approach, combining both feature-based and intensity-based methods. The proposed algorithm consists of two steps. The first step utilizes feature points to roughly estimate a motion parameter between successive frames; the second step applies our kernel based idea to align all the frames to the reference frame (typically the first frame). Experimental results using both synthetic and real image sequences demonstrate that our approach can automatically register all the image frames and be robust against illumination change, occlusion and image noise.
Chao LIAO Guijin WANG Quan MIAO Zhiguo WANG Chenbo SHI Xinggang LIN
Robust local image features have become crucial components of many state-of-the-art computer vision algorithms. Due to limited hardware resources, computing local features on embedded system is not an easy task. In this paper, we propose an efficient parallel computing framework for speeded-up robust features with an orientation towards multi-DSP based embedded system. We optimize modules in SURF to better utilize the capability of DSP chips. We also design a compact data layout to adapt to the limited memory resource and to increase data access bandwidth. A data-driven barrier and workload balance schemes are presented to synchronize parallel working chips and reduce overall cost. The experiment shows our implementation achieves competitive time efficiency compared with related works.
Quan MIAO Chun ZHANG Long MENG
This paper proposes a novel object tracking method via online boosting. The on-line boosting technique is combined with local features to treat tracking as a keypoint matching problem. First, We improve matching reliability by exploiting the statistical repeatability of local features. In addition, we propose 2D scale-rotation invariant quasi-keypoint matching to further improve matching efficiency. Benefiting from SURF feature's statistical repeatability and the complementary quasi-keypoint matching technique, we can easily find reliable matching pairs and thus perform accurate and stable tracking. Experimental results show that the proposed method achieves better performance compared with previously reported trackers.