The search functionality is under construction.

Author Search Result

[Author] Chenbo SHI(8hit)

1-8hit
  • An Interleaving Updating Framework of Disparity and Confidence Map for Stereo Matching

    Chenbo SHI  Guijin WANG  Xiaokang PEI  Bei HE  Xinggang LIN  

     
    LETTER-Image Recognition, Computer Vision

      Vol:
    E95-D No:5
      Page(s):
    1552-1555

    In this paper, we propose an interleaving updating framework of disparity and confidence map (IUFDCM) for stereo matching to eliminate the redundant and interfere information from unreliable pixels. Compared with other propagation algorithms using matching cost as messages, IUFDCM updates the disparity map and the confidence map in an interleaving manner instead. Based on the Confidence-based Support Window (CSW), disparity map is updated adaptively to alleviate the effect of input parameters. The reassignment for unreliable pixels with larger probability keeps ground truth depending on reliable messages. Consequently, the confidence map is updated according to the previous disparity map and the left-right consistency. The top ranks on Middlebury benchmark corresponding to different error thresholds demonstrate that our algorithm is competitive with the best stereo matching algorithms at present.

  • High-Accuracy Sub-Pixel Registration for Noisy Images Based on Phase Correlation

    Bei HE  Guijin WANG  Xinggang LIN  Chenbo SHI  Chunxiao LIU  

     
    LETTER-Image Processing and Video Processing

      Vol:
    E94-D No:12
      Page(s):
    2541-2544

    This paper proposes a high-accuracy sub-pixel registration framework based on phase correlation for noisy images. First we introduce a denoising module, where the edge-preserving filter is adopted. This strategy not only filters off the noise but also preserves most of the original image signal. A confidence-weighted optimization module is then proposed to fit the linear phase plane discriminately and to achieve sub-pixel shifts. Experiments demonstrate the effectiveness of the combination of our modules and improvements of the accuracy and robustness against noise compared to other sub-pixel phase correlation methods in the Fourier domain.

  • On-Line Rigid Object Tracking via Discriminative Feature Classification

    Quan MIAO  Chenbo SHI  Long MENG  Guang CHENG  

     
    LETTER-Pattern Recognition

      Pubricized:
    2016/08/03
      Vol:
    E99-D No:11
      Page(s):
    2824-2827

    This paper proposes an on-line rigid object tracking framework via discriminative object appearance modeling and learning. Strong classifiers are combined with 2D scale-rotation invariant local features to treat tracking as a keypoint matching problem. For on-line boosting, we correspond a Gaussian mixture model (GMM) to each weak classifier and propose a GMM-based classifying mechanism. Meanwhile, self-organizing theory is applied to perform automatic clustering for sequential updating. Benefiting from the invariance of the SURF feature and the proposed on-line classifying technique, we can easily find reliable matching pairs and thus perform accurate and stable tracking. Experiments show that the proposed method achieves better performance than previously reported trackers.

  • Real Time Aerial Video Stitching via Sensor Refinement and Priority Scan

    Chao LIAO  Guijin WANG  Bei HE  Chenbo SHI  Yongling SHEN  Xinggang LIN  

     
    LETTER-Image Processing and Video Processing

      Vol:
    E95-D No:8
      Page(s):
    2146-2149

    The time efficiency of aerial video stitching is still an open problem due to the huge amount of input frames, which usually results in prohibitive complexities in both image registration and blending. In this paper, we propose an efficient framework aiming to stitch aerial videos in real time. Reasonable distortions are allowed as a tradeoff for acceleration. Instead of searching for globally optimized solutions, we directly refine frame positions with sensor data to compensate for the accumulative error in alignment. A priority scan method is proposed to select pixels within overlapping area into the final panorama for blending, which avoids complicated operations like weighting or averaging on pixels. Experiments show that our method can generate satisfying results at very competitive speed.

  • High-Accuracy and Quick Matting Based on Sample-Pair Refinement and Local Optimization

    Bei HE  Guijin WANG  Chenbo SHI  Xuanwu YIN  Bo LIU  Xinggang LIN  

     
    PAPER-Image Processing and Video Processing

      Vol:
    E96-D No:9
      Page(s):
    2096-2106

    Based on sample-pair refinement and local optimization, this paper proposes a high-accuracy and quick matting algorithm. First, in order to gather foreground/background samples effectively, we shoot rays in hybrid (gradient and uniform) directions. This strategy utilizes the prior knowledge to adjust the directions for effective searching. Second, we refine sample-pairs of pixels by taking into account neighbors'. Both high confidence sample-pairs and usable foreground/background components are utilized and thus more accurate and smoother matting results are achieved. Third, to reduce the computational cost of sample-pair selection in coarse matting, this paper proposes an adaptive sample clustering approach. Most redundant samples are eliminated adaptively, where the computational cost decreases significantly. Finally, we convert fine matting into a de-noising problem, which is optimized by minimizing the observation and state errors iteratively and locally. This leads to less space and time complexity compared with global optimization. Experiments demonstrate that we outperform other state-of-the-art methods in local matting both on accuracy and efficiency.

  • Self-Clustering Symmetry Detection

    Bei HE  Guijin WANG  Chenbo SHI  Xuanwu YIN  Bo LIU  Xinggang LIN  

     
    LETTER-Image Recognition, Computer Vision

      Vol:
    E95-D No:9
      Page(s):
    2359-2362

    This paper presents a self-clustering algorithm to detect symmetry in images. We combine correlations of orientations, scales and descriptors as a triple feature vector to evaluate each feature pair while low confidence pairs are regarded as outliers and removed. Additionally, all confident pairs are preserved to extract potential symmetries since one feature point may be shared by different pairs. Further, each feature pair forms one cluster and is merged and split iteratively based on the continuity in the Cartesian and concentration in the polar coordinates. Pseudo symmetric axes and outlier midpoints are eliminated during the process. Experiments demonstrate the robustness and accuracy of our algorithm visually and quantitatively.

  • DSP-Based Parallel Implementation of Speeded-Up Robust Features

    Chao LIAO  Guijin WANG  Quan MIAO  Zhiguo WANG  Chenbo SHI  Xinggang LIN  

     
    LETTER-Image Recognition, Computer Vision

      Vol:
    E94-D No:4
      Page(s):
    930-933

    Robust local image features have become crucial components of many state-of-the-art computer vision algorithms. Due to limited hardware resources, computing local features on embedded system is not an easy task. In this paper, we propose an efficient parallel computing framework for speeded-up robust features with an orientation towards multi-DSP based embedded system. We optimize modules in SURF to better utilize the capability of DSP chips. We also design a compact data layout to adapt to the limited memory resource and to increase data access bandwidth. A data-driven barrier and workload balance schemes are presented to synchronize parallel working chips and reduce overall cost. The experiment shows our implementation achieves competitive time efficiency compared with related works.

  • Stereo Matching Using Local Plane Fitting in Confidence-Based Support Window

    Chenbo SHI  Guijin WANG  Xiaokang PEI  Bei HE  Xinggang LIN  

     
    LETTER-Image Recognition, Computer Vision

      Vol:
    E95-D No:2
      Page(s):
    699-702

    This paper addresses stereo matching under scenarios of smooth region and obviously slant plane. We explore the flexible handling of color disparity, spatial relation and the reliability of matching pixels in support windows. Building upon these key ingredients, a robust stereo matching algorithm using local plane fitting by Confidence-based Support Window (CSW) is presented. For each CSW, only these pixels with high confidence are employed to estimate optimal disparity plane. Considering that RANSAC has shown to be robust in suppressing the disturbance resulting from outliers, we employ it to solve local plane fitting problem. Compared with the state of the art local methods in the computer vision community, our approach achieves the better performance and time efficiency on the Middlebury benchmark.