Mingfu XUE Wei LIU Aiqun HU Youdong WANG
Hardware Trojan (HT) has emerged as an impending security threat to hardware systems. However, conventional functional tests fail to detect HT since Trojans are triggered by rare events. Most of the existing side-channel based HT detection techniques just simply compare and analyze circuit's parameters and offer no signal calibration or error correction properties, so they suffer from the challenge and interference of large process variations (PV) and noises in modern nanotechnology which can completely mask Trojan's contribution to the circuit. This paper presents a novel HT detection method based on subspace technique which can detect tiny HT characteristics under large PV and noises. First, we formulate the HT detection problem as a weak signal detection problem, and then we model it as a feature extraction model. After that, we propose a novel subspace HT detection technique based on time domain constrained estimator. It is proved that we can distinguish the weak HT from variations and noises through particular subspace projections and reconstructed clean signal analysis. The reconstructed clean signal of the proposed algorithm can also be used for accurate parameter estimation of circuits, e.g. power estimation. The proposed technique is a general method for related HT detection schemes to eliminate noises and PV. Both simulations on benchmarks and hardware implementation validations on FPGA boards show the effectiveness and high sensitivity of the new HT detection technique.
Syful ISLAM Dong WANG Raula GAIKOVINA KULA Takashi ISHIO Kenichi MATSUMOTO
Third-party package usage has become a common practice in contemporary software development. Developers often face different challenges, including choosing the right libraries, installing errors, discrepancies, setting up the environment, and building failures during software development. The risks of maintaining a third-party package are well known, but it is unclear how information from Stack Overflow (SO) can be useful. This paper performed an empirical study to explore npm package co-usage examples from SO. From over 30,000 SO question posts, we extracted 2,100 posts with package usage information and matched them against the 217,934 npm library package. We find that, popular and highly used libraries are not discussed as often in SO. However, we can see that the accepted answers may prove useful, as we believe that the usage examples and executable commands could be reused for tool support.
Xiao-Dong WANG Keikichi HIROSE Jin-Song ZHANG Nobuaki MINEMATSU
A method was developed for automatic recognition of syllable tone types in continuous speech of Mandarin by integrating two techniques, tone nucleus modeling and neural network classifier. The tone nucleus modeling considers a syllable F0 contour as consisting of three parts: onset course, tone nucleus, and offset course. Two courses are transitions from/to neighboring syllable F0 contours, while the tone nucleus is intrinsic part of the F0 contour. By viewing only the tone nucleus, acoustic features less affected by neighboring syllables are obtained. When using the tone nucleus modeling, automatic detection of tone nucleus comes crucial. An improvement was added to the original detection method. Distinctive acoustic features for tone types are not limited to F0 contours. Other prosodic features, such as waveform power and syllable duration, are also useful for tone recognition. Their heterogeneous features are rather difficult to be handled simultaneously in hidden Markov models (HMM), but are easy in neural networks. We adopted multi-layer perceptron (MLP) as a neural network. Tone recognition experiments were conducted for speaker dependent and independent cases. In order to show the effect of integration, experiments were conducted also for two baselines: HMM classifier with tone nucleus modeling, and MLP classifier viewing entire syllable instead of tone nucleus. The integrated method showed 87.1% of tone recognition rate in speaker dependent case, and 80.9% in speaker independent case, which was about 10% relative error reduction as compared to the baselines.
Xiaodong WANG Kenji OGINO Kuniaki TANAKA Hiroaki USUI
Thin film of polyurethane having metal complex was prepared by vapor deposition polymerization of bis (5,8-dihydroxyquinoline) zinc (ZnHq2) and 4, 4'-diphenylmethane diisocyanate monomers. The film was applied for the electron-transporting emissive layer of the organic light emitting diode. The deposition-polymerized film was found to give higher quantum efficiency of luminescence than the ZnHq2 monomer film.
Wei LU Weidong WANG Ergude BAO Liqiang WANG Weiwei XING Yue CHEN
Web Service Composition (WSC) has been well recognized as a convenient and flexible way of service sharing and integration in service-oriented application fields. WSC aims at selecting and composing a set of initial services with respect to the Quality of Service (QoS) values of their attributes (e.g., price), in order to complete a complex task and meet user requirements. A major research challenge of the QoS-aware WSC problem is to select a proper set of services to maximize the QoS of the composite service meeting several QoS constraints upon various attributes, e.g. total price or runtime. In this article, a fast algorithm based on QoS-aware sampling (FAQS) is proposed, which can efficiently find the near-optimal composition result from sampled services. FAQS consists of five steps as follows. 1) QoS normalization is performed to unify different metrics for QoS attributes. 2) The normalized services are sampled and categorized by guaranteeing similar number of services in each class. 3) The frequencies of the sampled services are calculated to guarantee the composed services are the most frequent ones. This process ensures that the sampled services cover as many as possible initial services. 4) The sampled services are composed by solving a linear programming problem. 5) The initial composition results are further optimized by solving a modified multi-choice multi-dimensional knapsack problem (MMKP). Experimental results indicate that FAQS is much faster than existing algorithms and could obtain stable near-optimal result.
Nana ZHANG Huarui YIN Weidong WANG Suhua TANG
In-phase and quadrature-phase imbalance (IQI) at transceivers is one of the serious hardware impairments degrading system performance. In this paper, we study the overall performance of massive multi-user multi-input multi-output (MU-MIMO) systems with IQI at both the base station (BS) and user equipments (UEs), including the estimation of channel state information, required at the BS for the precoding design. We also adopt a widely-linear precoding based on the real-valued channel model to make better use of the image components of the received signal created by IQI. Of particular importance, we propose estimators of the real-valued channel and derive the closed-form expression of the achievable downlink rate. Both the analytical and simulation results show that IQI at the UEs limits the dowlink rate to finite ceilings even when an infinite number of BS antennas is available, and the results also prove that the widely-linear precoding based on the proposed channel estimation method can improve the overall performance of massive MU-MIMO systems with IQI.
Weina NIU Xiaosong ZHANG Guowu YANG Ruidong CHEN Dong WANG
Advanced Persistent Threat (APT) is one of the most serious network attacks that occurred in cyberspace due to sophisticated techniques and deep concealment. Modeling APT attack process can facilitate APT analysis, detection, and prediction. However, current techniques focus on modeling known attacks, which neither reflect APT attack dynamically nor take human factors into considerations. In order to overcome this limitation, we propose a Targeted Complex Attack Network (TCAN) model for APT attack process based on dynamic attack graph and network evolution. Compared with current models, our model addresses human factors by conducting a two-layer network structure. Meanwhile, we present a stochastic model based on states change in the target network to specify nodes involved in the procedure of this APT. Besides, our model adopts time domain to expand the traditional attack graph into dynamic attack network. Our model is featured by flexibility, which is proven through changing the related parameters. In addition, we propose dynamic evolution rules based on complex network theory and characteristics of the actual attack scenarios. Finally, we elaborate a procedure to add nodes by a matrix operation. The simulation results show that our model can model the process of attack effectively.
Dong WANG Hiroyuki MITSUHARA Masami SHISHIBORI
It is significant to develop better search methods to handle the rapidly increasing volume of multimedia data. For NN (Nearest Neighbor) search in metric spaces, the TLAESA (Tree Linear Approximating and Eliminating Search Algorithm) is a state of art fast search method. In this paper a method is proposed to improve the TLAESA by revising the tree structure with an optimal number of selected global pivots in the higher levels as representatives and employing the best-first search strategy. Based on an improved version of the TLAESA that succeeds in using the best-first search strategy to greatly reduce the distance calculations, this method improves the drawback that calculating less at the price of the lower pruning rate of branches. The lower pruning rate further can lead to lower search efficiency, because the priority queue used in the adopted best-first search strategy stores the information of the visited but unpruned nodes, and need be frequently accessed and sorted. In order to enhance the pruning rate of branches, the improved method tries to make more selected global pivots locate in the higher levels of the search tree as representatives. As more real distances instead of lower bound estimations of the node-representatives are used for approximating the closet node and for “branch and bound”, not only which nodes are close to the query object can be evaluated more effectively, but also the pruning rate of branches can be enhanced. Experiments show that for k-NN queries in Euclidean space, in a proper pivot selection strategy the proposed method can reach the same fewest distance calculations as the LAESA (Linear Approximating and Eliminating Search Algorithm) which saves more calculations than the TLAESA, and can achieve a higher search efficiency than the TLAESA.
Weiqiang LIU Xiaohui CHEN Weidong WANG
This work investigates the cell range expansion (CRE) possible with time-domain multiplexing inter-cell interference coordination (TDM ICIC) in heterogeneous cellular networks (HCN). CRE is proposed to enable a user to connect to a picocell even when it is not the cell with the strongest received power. However, the users in the expanded region suffer severe interference from the macrocells. To alleviate the cross-tier interference, TDM ICIC is proposed to improve the SIR of pico users. In contrast to previous studies on CRE with TDM ICIC, which rely mostly on simulations, we give theoretical analysis results for different types of users in HCN with CRE and TDM ICIC under the Poisson Point Process (PPP) model, especially for the users in the expanded region of picocells. We analyze the outage probability and average ergodic rate based on the connect probability and statistical distance we obtain in advance. Furthermore, we analyze the optimal ratio of almost blank subframes (ABS) and bias factor of picocells in terms of the network fairness, which is useful in the parameter design of a two-tier HCN.
Yibo FAN Jidong WANG Takeshi IKENAGA Yukiyasu TSUNOO Satoshi GOTO
H.264/AVC is the newest video coding standard. There are many new features in it which can be easily used for video encryption. In this paper, we propose a new scheme to do video encryption for H.264/AVC video compression standard. We define Unequal Secure Encryption (USE) as an approach that applies different encryption schemes (with different security strength) to different parts of compressed video data. This USE scheme includes two parts: video data classification and unequal secure video data encryption. Firstly, we classify the video data into two partitions: Important data partition and unimportant data partition. Important data partition has small size with high secure protection, while unimportant data partition has large size with low secure protection. Secondly, we use AES as a block cipher to encrypt the important data partition and use LEX as a stream cipher to encrypt the unimportant data partition. AES is the most widely used symmetric cryptography which can ensure high security. LEX is a new stream cipher which is based on AES and its computational cost is much lower than AES. In this way, our scheme can achieve both high security and low computational cost. Besides the USE scheme, we propose a low cost design of hybrid AES/LEX encryption module. Our experimental results show that the computational cost of the USE scheme is low (about 25% of naive encryption at Level 0 with VEA used). The hardware cost for hybrid AES/LEX module is 4678 Gates and the AES encryption throughput is about 50 Mbps.
Xiaodong WANG Lyes DOUADJI Xia ZHANG Mingquan SHI
The accurate calculation of the inductance is the most basic problem of the inductor design. In this paper, the core flux density distribution and leakage flux in core window and winding of core-type inductor are analyzed by finite element analysis (FEA) firstly. Based on it, an improved magnetic equivalent circuit with high accuracy flux density distribution (iMEC) is proposed for a single-phase core-type inductor. Depend on the geometric structure, two leakage paths of the core window are modeled. Furthermore, the iMEC divides the magnetomotive force of the winding into the corresponding core branch. It makes the core flux density distribution consistent with the FEA distribution to improve the accuracy of the inductance. In the iMEC, flux density of the core leg has an error less than 5.6% compared to FEA simulation at 150A. The maximum relative error of the inductance is less than 8.5% and the average relative error is less than 6% compared to the physical prototype test data. At the same time, due to the high computational efficiency of iMEC, it is very suitable for the population-based optimization design.
Xiao XIA Xinye LIN Xiaodong WANG Xingming ZHOU Deke GUO
To facilitate the discovery of mobile apps in personal devices, we present the personalized live homescreen system. The system mines the usage patterns of mobile apps, generates personalized predictions, and then makes apps available at users' hands whenever they want them. Evaluations have verified the promising effectiveness of our system.
Haiming DU Jinfeng CHEN Huadong WANG
Research into closed-form Gaussian sum smoother has provided an attractive approach for tracking in clutter, joint detection and tracking (in clutter), and multiple target tracking (in clutter) via the probability hypothesis density (PHD). However, Gaussian sum smoother with nonlinear target model has particular nonlinear expressions in the backward smoothed density that are different from the other filters and smoothers. In order to extend the closed-form solution of linear Gaussian sum smoother to nonlinear model, two closed-form approximations for nonlinear Gaussian sum smoother are proposed, which use Gaussian particle approximation and unscented transformation approximation, separately. Since the estimated target number of PHD smoother is not stable, a heuristic approximation method is added. At last, the Bernoulli smoother and PHD smoother are simulated using Gaussian particle approximation and unscented transformation approximation, and simulation results show that the two proposed algorithms can obtain smoothed tracks with nonlinear models, and have better performance than filter.
Yanqiang SUN Xiaodong WANG Xingming ZHOU
Classical jamming attack models in the time domain have been proposed, such as constant jammer, random jammer, and reactive jammer. In this letter, we consider a new problem: given k jammers, how does the attacker minimize the pair-wise connectivity among the nodes in a Wireless Sensor Network (WSN)? We call this problem k-Jammer Deployment Problem (k-JDP). To the best of our knowledge, this is the first attempt at considering the position-critical jamming attack against wireless sensor network. We mainly make three contributions. First, we prove that the decision version of k-JDP is NP-complete even in the ideal situation where the attacker has full knowledge of the topology information of sensor network. Second, we propose a mathematical formulation based on Integer Programming (IP) model which yields an optimal solution. Third, we present a heuristic algorithm HAJDP, and compare it with the IP model. Numerical results show that our heuristic algorithm is computationally efficient.
Leibo LIU Dong WANG Yingjie CHEN Min ZHU Shouyi YIN Shaojun WEI
This paper presents the design of a multiple-standard 1080 high definition (HD) video decoder on a mixed-grained reconfigurable computing platform integrating coarse-grained reconfigurable processing units (RPUs) and FPGAs. The proposed RPU, including 16×16 multi-functional processing elements (PEs), is used to accelerate compute-intensive tasks in the video decoding. A soft-core-based microprocessor array is implemented on the FPGA and adopted to speed-up the dynamic reconfiguration of the RPU. Furthermore, a mail-box-based communication scheme is utilized to improve the communication efficiency between RPUs and FPGAs. By exploiting dynamic reconfiguration of the RPUs and static reconfiguration of the FPGAs, the proposed platform achieves scalable performances and cost trade-offs to support a variety of video coding standards, including MPEG-2, AVS, H.264, and HEVC. The measured results show that the proposed platform can support H.264 1080 HD video streams at up to 57 frames per second (fps) and HEVC 1080 HD video streams at up to 52fps under 250MHz, at the same time, it achieves a 3.6× performance gain over an industrial coarse-grained reconfigurable processor for H.264 decoding, and a 6.43× performance boosts over a general purpose processor based implementation for HEVC decoding.
Xiangxu MENG Xiaodong WANG Xinye LIN
The GPS trajectory databases serve as bases for many intelligent applications that need to extract some trajectories for future processing or mining. When doing such tasks, spatio-temporal range queries based methods, which find all sub-trajectories within the given spatial extent and time interval, are commonly used. However, the history trajectory indexes of such methods suffer from two problems. First, temporal and spatial factors are not considered simutaneously, resulting in low performance when processing spatio-temporal queries. Second, the efficiency of indexes is sensitive to query size. The query performance changes dramatically as the query size changed. This paper proposes workload-aware Adaptive OcTree based Trajectory clustering Index (ATTI) aiming at optimizing trajectory storage and index performance. The contributions are three-folds. First, the distribution and time delay of the trajectory storage are introduced into the cost model of spatio-temporal range query; Second, the distribution of spatial division is dynamically adjusted based on GPS update workload; Third, the query workload adaptive mechanism is proposed based on virtual OcTree forest. A wide range of experiments are carried out over Microsoft GeoLife project dataset, and the results show that query delay of ATTI could be about 50% shorter than that of the nested index.
In Digital Library (DL) applications, digital book clustering is an important and urgent research task. However, it is difficult to conduct effectively because of the great length of digital books. To do the correct clustering for digital books, a novel method based on probabilistic topic model is proposed. Firstly, we build a topic model named LDAC. The main goal of LDAC topic modeling is to effectively extract topics from digital books. Subsequently, Gibbs sampling is applied for parameter inference. Once the model parameters are learned, each book is assigned to the cluster which maximizes the posterior probability. Experimental results demonstrate that our approach based on LDAC is able to achieve significant improvement as compared to the related methods.
Ying YANG Wenxiang DONG Weiqiang LIU Weidong WANG
Mobility load balancing (MLB) is a key technology for self-organization networks (SONs). In this paper, we explore the mobility load balancing problem and propose a unified cell specific offset adjusting algorithm (UCSOA) which more accurately adjusts the largely uneven load between neighboring cells and is easily implemented in practice with low computing complexity and signal overhead. Moreover, we evaluate the UCSOA algorithm in two different traffic conditions and prove that the UCSOA algorithm can get the lower call blocking rates and handover failure rates. Furthermore, the interdependency of the proposed UCSOA algorithm's performance and that of the inter-cell interference coordination (ICIC) algorithm is explored. A self-organization soft frequency reuse scheme is proposed. It demonstrates UCSOA algorithm and ICIC algorithm can obtain a positive effect for each other and improve the network performance in LTE system.
Hao ZHENG Xingan XU Changwei LV Yuanfang SHANG Guodong WANG Chunlin JI
Concatenated zigzag (CZ) codes are classified as one kind of parallel-concatenated codes with powerful performance and low complexity. This kind of codes has flexible implementation methods and a good application prospect. We propose a modified turbo-type decoder and adaptive extrinsic information scaling method based on the Max-Log-APP (MLA) algorithm, which can provide a performance improvement also under the relatively low decoding complexity. Simulation results show that the proposed method can effectively help the sub-optimal MLA algorithm to approach the optimal performance. Some contrasts with low-density parity-check (LDPC) codes are also presented in this paper.
Weidong WANG Gaofeng CUI Sixing LU Yinghai ZHANG
The capacity of Multiple-Input Multiple-Output networks (MIMO) is seriously degraded by interference. Many solutions have been given to overcome this problem, such as network MIMO and maximum signal to leakage plus noise ratio (max-SLNR). In this letter, a downlink distributed precoding method is proposed to nullify the intra-cell interference and mitigate the negative effect on other cell users. This method can keep the merits of network MIMO and max-SLNR while overcoming their shortcomings. Numerical results show that the proposed precoding method outperforms Block Diagonalization (BD), max-SLNR and Block Diagonalization with Other Cell Interference (BD-OCI).