1-4hit |
Takayuki KATO Yoshinori KOGAMI Yuuki FUNAHASHI Atsushi YAMAOKA Keiichi YAMAGUCHI Yasuhiko TANABE Jiafeng ZHOU Kevin MORRIS Gavin T. WATKINS
Recently, dynamic power supply voltage techniques, such as an Envelope Elimination and Restoration power amplifier (EER-PA) or Envelope-Tracking Power amplifier (ET-PA), have been attracting much attention because they can maintain high efficiency in large back-off region [1]-[6]. The dynamic power supply voltage techniques cause strong nonlinearity compared to a conventional power amplifier, hence a memoryless Digital Predistortion (DPD) technique is indispensable for these efficiency enhancement techniques. However, the performance of the memoryless DPD is degraded due to the frequency response of the envelope amplifier in the dynamic power supply voltage techniques [7]-[9]. In this paper, we clarify the degradation mechanisms of the memoryless DPD for the EER-PA due to the frequency response of the envelope amplifier based on the results of two-tone tests, and propose an analytical model for improving the performance of the memoryless DPD developed for the EER-PA. In addition, a prototype EER-PA is developed and we demonstrate that the residual distortion of the developed EER-PA with conventional memoryless DPD algorithm is compensated by the new algorithm based on the proposed analytical model. In the two-tone test, third-order intermodulation distortion (IMD3) with a tone spacing from 100 kHz to 4 MHz is improvement by up to 25 dB by the memoryless DPD algorithm based on the proposed model. Measured adjacent channel leakage power ratio (ACPR) of the developed EER-PA is improved from -22.5 dBc to -42.5 dBc in the OFDM signal test with 1.08 MHz bandwidth.
Ping LI Feng ZHOU Bo ZHAO Maliang LIU Huaxi GU
This paper presents a large-angle imaging algorithm based on a dynamic scattering model for inverse synthetic aperture radar (ISAR). In this way, more information can be presented in an ISAR image than an ordinary RD image. The proposed model describes the scattering characteristics of ISAR target varying with different observation angles. Based on this model, feature points in each sub-image of the ISAR targets are extracted and matched using the scale-invariant feature transform (SIFT) and random sample consensus (RANSAC) algorithms. Using these feature points, high-precision rotation angles are obtained via joint estimation, which makes it possible to achieve a large angle imaging using the back-projection algorithm. Simulation results verifies the validity of the proposed method.
Jae-Young YANG Ledan WU Yafeng ZHOU Joonho KWON Han-You JEONG
In this paper, we study Wi-Fi mesh networks (WMNs) as a promising candidate for wireless networking infrastructure that interconnects a variety of access networks. The main performance bottleneck of a WMN is their limited capacity due to the packet collision from the contention-based IEEE 802.11s MAC. To mitigate this problem, we present the distributed link-activation (DLA) protocol which activates a set of collision-free links for a fixed amount of time by exchanging a few control packets between neighboring MRs. Through the rigorous proof, it is shown that the upper bound of the DLA rounds is O(Smax), where Smax is the maximum number of (simultaneous) interference-free links in a WMN topology. Based on the DLA, we also design the distributed throughput-maximal scheduling (D-TMS) scheme which overlays the DLA protocol on a new frame architecture based on the IEEE 802.11 power saving mode. To mitigate its high latency, we propose the D-TMS adaptive data-period control (D-TMS-ADPC) that adjusts the data period depending on the traffic load of a WMN. Numerical results show that the D-TMS-ADPC scheme achieves much higher throughput performance than the IEEE 802.11s MAC.
Rugang WANG Feng ZHOU Xiaofang YANG Zhangkai LUO
To improve the robustness of the polarization modulation (PM) technique applied in dual-polarized satellite systems, a zero-forcing aided demodulation (ZFAD) method is proposed to eliminate the impairment to the PM from the depolarization effect (DE). The DE elimination is traditionally dependent on the pre-compensation method, which is based on the channel state information (CSI). While the distance between communication partners in satellite systems is so long that the CSI can not be always updated in time at the transmitter side. Therefore, the pre-compensation methods may not perform well. In the ZFAD method, the CSI is estimated at the receiver side and the zero forcing matrix is constructed to process the received signal before demodulating the PM signal. In this way, the DE is eliminated. In addition, we derive the received signal-to-noise ratio expression of the PC and ZFAD methods with the statistical channel model for a better comparison. Theoretical analysis and simulation results demonstrate the ZFAD method can eliminate the DE effect effectively and achieve a better symbol error rate performance than the pre-compensation method.