1-1hit |
Kai BLEKKER Rene RICHTER Ryosuke ODA Satoshi TANIYAMA Oliver BENNER Gregor KELLER Benjamin MUNSTERMANN Andrey LYSOV Ingo REGOLIN Takao WAHO Werner PROST
We report on the fabrication and analysis of basic digital circuits containing InAs nanowire transistors on a host substrate. The nanowires were assembled at predefined positions by means of electric field-assisted self-assembly within each run generating numerous circuits simultaneously. Inverter circuits composed of two separated nanowire transistors forming a driver and an active load have been fabricated. The inverter circuits exhibit a gain (>1) in the MHz regime and a time constant of about 0.9 ns. A sample & hold core element is fabricated based on an InAs nanowire transistor connected to a hold capacitor, both on a Silicon and an InP isolating substrate, respectively. The low leakage read-out of the hold capacitor is done by InP-based metal-insulator heterojunction FET grown on the same substrate prior to nanowire FET fabrication. Experimental operation of the circuit is demonstrated at 100 MHz sampling frequency. The presented approach enables III/V high-speed, low-voltage logic circuits on a wide variety of host substrates which may be up scaled to high volume circuits.