The search functionality is under construction.
The search functionality is under construction.

Author Search Result

[Author] Hajime KITA(4hit)

1-4hit
  • Effect of Heterostructure 2-D Electron Confinement on the Tunability of Resonant Frequencies of Terahertz Plasma-Wave Transistors

    Taiichi OTSUJI  Yoshihiro KANAMARU  Hajime KITAMURA  Mitsuru MATSUOKA  Osamu OGAWARA  

     
    PAPER

      Vol:
    E86-C No:10
      Page(s):
    1985-1993

    This paper describes an experimental study on resonant properties of the plasma-wave field-effect transistors (PW-FET's). The PW-FET is a new type of the electron devices, which utilizes the plasma resonance effect of highly dense two-dimensional conduction electrons in the FET channel. Frequency tunability of plasma-wave resonance in the terahertz range was experimentally investigated for sub 100-nm gate-length GaAs MESFET's by means of laser-photo-mixing terahertz excitation. The measured results, including the first observation of the third-harmonic resonance in the terahertz range, however, fairly deviate from the ideal characteristics expected for an ideal 2-D confined electron systems. The steady-state electronic charge distribution in the MESFET channel under laser illumination was analyzed to study the effect of insufficient carrier confinement on the frequency tunability. The simulated results support the measured results. It was clarified that an ideal heterostructure 2-D electron confinement is essential to assuring smooth, monotonic frequency tunability of plasma-wave resonance.

  • Numerical Analysis for Resonance Properties of Plasma-Wave Field-Effect Transistors and Their Terahertz Applications to Smart Photonic Network Systems

    Taiichi OTSUJI  Shin NAKAE  Hajime KITAMURA  

     
    PAPER-Novel Electron Devices

      Vol:
    E84-C No:10
      Page(s):
    1470-1476

    This paper describes the numerical analysis for terahertz electromagnetic-wave oscillation/detection properties of plasma-wave field-effect transistors (PW-FET's) and their applications to future smart photonic network systems. The PW-FET is a new type of the electron device that utilizes the plasma resonance effect of highly dense two-dimensional conduction electrons in the FET channel. By numerically solving the hydrodynamic equations for PW-FET's, the plasma resonance characteristics under terahertz electromagnetic-wave absorption are analyzed for three types of FET's; Si MOSFET's, GaAs MESFET's, and InP-based HEMT's. The results indicate that the InP-based sub-100-nm gate-length HEMT's exhibit the most promising oscillation/detection characteristics in the terahertz range with very wide frequency tunability. By introducing the PW-FET's as injection-locked terahertz-frequency-tunable oscillators and terahertz mixers, a new idea of coherent heterodyne detection utilizing terahertz IF (intermediate-frequency) bands is proposed for the future smart photonic network systems that enable real-time adaptive wavelength routing for add-drop multiplexing. The plasma resonance of PW-FET's by means of different frequency generation based on direct photomixing is also proposed as an alternative approach to injection-locked terahertz oscillation. To realize it, virtual carrier excitations by the polariton having photon energy lower than the bandgap of the channel is a possible mechanism.

  • Scattering Characteristics of the Human Body in 67-GHz Band

    Ngochao TRAN  Tetsuro IMAI  Koshiro KITAO  Yukihiko OKUMURA  Takehiro NAKAMURA  Hiroshi TOKUDA  Takao MIYAKE  Robin WANG  Zhu WEN  Hajime KITANO  Roger NICHOLS  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2017/12/15
      Vol:
    E101-B No:6
      Page(s):
    1434-1442

    The fifth generation (5G) system using millimeter waves is considered for application to high traffic areas with a dense population of pedestrians. In such an environment, the effects of shadowing and scattering of radio waves by human bodies (HBs) on propagation channels cannot be ignored. In this paper, we clarify based on measurement the characteristics of waves scattered by the HB for typical non-line-of-sight scenarios in street canyon environments. In these scenarios, there are street intersections with pedestrians, and the angles that are formed by the transmission point, HB, and reception point are nearly equal to 90 degrees. We use a wide-band channel sounder for the 67-GHz band with a 1-GHz bandwidth and horn antennas in the measurements. The distance parameter between antennas and the HB is changed in the measurements. Moreover, the direction of the HB is changed from 0 to 360 degrees. The evaluation results show that the radar cross section (RCS) of the HB fluctuates randomly over the range of approximately 20dB. Moreover, the distribution of the RCS of the HB is a Gaussian distribution with a mean value of -9.4dBsm and the standard deviation of 4.2dBsm.

  • Analyzing the Effect of Museum Practice by Using a Multi-Mouse Quiz among Children from Different Grades — A Reflection Perspective Open Access

    Juan ZHOU  Mikihiko MORI  Hajime KITA  

     
    INVITED PAPER

      Vol:
    E102-C No:11
      Page(s):
    771-779

    Multi-Mouse Quiz (MMQ) is a quiz application based on the Single Display Groupware (SDG)[1] concept through which several users can answer quizzes by sharing a computer to take the quiz in a classroom or any other learning environment. We conducted a practice, where we used the MMQ to support collaborative learning, which was combined with a museum visit. In the previous research, we found that the 3rd-grade children were able to operate the MMQ without any special assistance from the researchers, and that their use of the MMQ was characterized by high engagement[2]. In this study, we also conducted qualitative evaluation in the form of observation data and a free description of the questionnaire; we found that, compared to previous studies, which used MMQ with 6th-grade children, the 3rd-grade were more willing to use body language to express their emotions, and this tendency made the whole class more active. Furthermore, MMQ quiz learning inspired children with reflection perspectives to participate in the museum activity and activities in the computer room.