The search functionality is under construction.
The search functionality is under construction.

Author Search Result

[Author] Hong JIANG(28hit)

1-20hit(28hit)

  • Robust Node Positioning in Wireless Sensor Networks

    Ayong YE  Jianfeng MA  Xiaohong JIANG  Susumu HORIGUCHI  

     
    PAPER-Network

      Vol:
    E92-B No:6
      Page(s):
    2023-2031

    Secure sensor localization is a prerequisite for many sensor networks to retrieve trustworthy data. However, most of existing node positioning systems were studied in trust environment and are therefore vulnerable to malicious attacks. In this work, we develop a robust node positioning mechanism(ROPM) to protect localization techniques from position attacks. Instead of introducing countermeasures for every possible internal or external attack, our approach aims at making node positioning system attack-tolerant by removing malicious beacons. We defeat internal attackers and external attackers by applying different strategies, which not only achieves robustness to attacks but also dramatically reduces the computation overhead. Finally, we provide detailed theoretical analysis and simulations to evaluate the proposed technique.

  • Self-Routing Nonblocking WDM Switches Based on Arrayed Waveguide Grating

    Yusuke FUKUSHIMA  Xiaohong JIANG  Achille PATTAVINA  Susumu HORIGUCHI  

     
    PAPER-Switching for Communications

      Vol:
    E92-B No:4
      Page(s):
    1173-1182

    Arrayed waveguide grating (AWG) is a promising technology for constructing high-speed large-capacity WDM switches, because it can switch fast, is scalable to large size and consumes little power. To take the full advantage of high-speed AWG, the routing control of a massive AWG-based switch should be as simple as possible. In this paper, we focus on the self-routing design of AWG-based switches with O(1) constant routing complexity and propose a novel construction of self-routing AWG switches that can guarantee the attractive nonblocking property for both the wavelength-to-wavelength and wavelength-to-fiber request models. We also fully analyze the proposed design in terms of its blocking property, hardware cost and crosstalk performance and compare it against traditional designs. It is expected that the proposed construction will be useful for the design and all-optical implementation of future ultra high-speed optical packet/burst switches.

  • A Nonblocking Optical Switching Network for Crosstalk-Free Permutation

    Xiaohong JIANG  Md. Mamun-ur-Rashid KHANDKER  Hong SHEN  Susumu HORIGUCHI  

     
    PAPER-Switching

      Vol:
    E86-B No:12
      Page(s):
    3580-3589

    Vertical stacking is a novel technique for building switching networks, and packing multiple compatible connections together is an effective strategy to reduce network hardware cost. In this paper, we study the crosstalk-free permutation capability of an optical switching network built on the vertical stacking of optical banyan networks to which packing strategy is applied. We first look into the nonblocking condition of this optical switching network. We then study the crosstalk-free permutation in this network by decomposing a permutation evenly into multiple crosstalk-free partial permutations (CFPPs) and realizing each CFPP in a stacked plane of the network such that a crosstalk-free permutation can be performed in a single pass. We present a rigorous proof of CFPP decomposability of a permutation and also a complete algorithm for CFPP decomposition. The possibility of a tradeoff between the number of passes and the number of planes required for realizing a crosstalk-free permutation in this network is also explored in this paper.

  • Hard-Limited Karhunen-Loeve Transform for Face Recognition

    Chih-Chien Thomas CHEN  Chin-Ta CHEN  Ming-Hong JIANG  

     
    LETTER-Image

      Vol:
    E87-A No:7
      Page(s):
    1836-1838

    A face recognition system based on the hard-limited eigenfunctions derived from the Karhunen-Loeve transform is proposed. The key of this approach is to change the inner product of the face image and the selected eigenvectors from floating point arithmetic to integer arithmetic. A database with 1000 facial images corresponding to 100 subjects is collected for system evaluation. It is demonstrated that 92% correct classification rate and 6-fold computational time saving can be achieved by the use of the first 150 hard-limited features.

  • A Generalized Data Uploading Scheme for D2D-Enhanced Cellular Networks

    Xiaolan LIU  Lisheng MA  Xiaohong JIANG  

     
    PAPER-Network

      Pubricized:
    2019/03/22
      Vol:
    E102-B No:9
      Page(s):
    1914-1923

    This paper investigates data uploading in cellular networks with the consideration of device-to-device (D2D) communications. A generalized data uploading scheme is proposed by leveraging D2D cooperation among the devices to reduce the data uploading time. In this scheme, we extend the conventional schemes on cooperative D2D data uploading for cellular networks to a more general case, which considers D2D cooperation among both the devices with or without uploading data. To motivate D2D cooperation among all available devices, we organize the devices within communication range by offering them rewards to construct multi-hop D2D chains for data uploading. Specifically, we formulate the problem of chain formation among the devices for data uploading as a coalitional game. Based on merge-and-split rules, we develop a coalition formation algorithm to obtain the solution for the formulated coalitional game with convergence on a stable coalitional structure. Finally, extensive numerical results show the effectiveness of our proposed scheme in reducing the average data uploading time.

  • Acknowledgment Mechanisms for Network-Coding-Based Reliable Wireless Multicast

    Kaikai CHI  Xiaohong JIANG  Yi-hua ZHU  Yanjun LI  

     
    PAPER-Fundamental Theories for Communications

      Vol:
    E95-B No:10
      Page(s):
    3103-3112

    Recently, network coding has been applied to reliable multicast in wireless networks for packet loss recovery, resulting in significant bandwidth savings. In network-coding-based multicast schemes, once a receiver receives one packet from the source it sends an ACK to acknowledge packet receipt. Such acknowledgment mechanism has the following limitation: when an ACK from one receiver is lost, the source considers the corresponding packet to be lost at this receiver and then conducts unnecessary retransmission. Motivated by this basic observation, we first propose a block-based acknowledgment mechanism, where an ACK now acknowledges all previously received packets in the current block such that the later received ACKs can offset the loss of previous ACKs. To reduce the total amount of feedback overhead, we further propose a more simple feedback mechanism, in which the receivers only start to send acknowledgments from the last two packets (not from the first one as in the first mechanism) of the current block. The first mechanism has the potential to achieve better performance over the latter one in wireless networks with long deep fades (i.e., continuous packet losses) due to its continuous transmissions of ACKs, while the second one is more promising for wireless networks with only random packet losses due to its smaller amount of feedback. Both theoretical and simulation results demonstrate that, compared to the current acknowledgment mechanism in network-coding-based reliable multicast schemes, these two mechanisms can achieve much higher bandwidth efficiency.

  • Variant X-Tree Clock Distribution Network and Its Performance Evaluations

    Xu ZHANG  Xiaohong JIANG  Susumu HORIGUCHI  

     
    PAPER-Low-Power and High-Performance VLSI Circuit Technology

      Vol:
    E90-C No:10
      Page(s):
    1909-1918

    The evolution of VLSI chips towards larger die size, smaller feature size and faster clock speed makes the clock distribution an increasingly important issue. In this paper, we propose a new clock distribution network (CDN), namely Variant X-Tree, based on the idea of X-Architecture proposed recently for efficient wiring within VLSI chips. The Variant X-Tree CDN keeps the nice properties of equal-clock-path and symmetric structure of the typical H-Tree CDN, but results in both a lower maximal clock delay and a lower clock skew than its H-Tree counterpart, as verified by an extensive simulation study that incorporates simultaneously the effects of process variations and on-chip inductance. We also propose a closed-form statistical models for evaluating the skew and delay of the Variant X-Tree CDN. The comparison between the theoretical results and the simulation results indicates that the proposed statistical models can be used to efficiently and rapidly evaluate the performance of the variant X-Tree CDNs.

  • A Variable Partitioning Algorithm of BDD for FPGA Technology Mapping

    Jie-Hong JIANG  Jing-Yang JOU  Juinn-Dar HUANG  Jung-Shian WEI  

     
    PAPER

      Vol:
    E80-A No:10
      Page(s):
    1813-1819

    Field Programmable Gate Arrays (FPGA's) are important devices for rapid system prototyping. Roth-Karp decomposition is one of the most popular decomposition techniques for Look-Up Table (LUT) -based FPGA technology mapping. In this paper, we propose a novel algorithm based on Binary Decision Diagrams (BDD's) for selecting good lambda set variables in Roth-Karp decomposition to minimize the number of consumed configurable logic blocks (CLB's) in FPGA's. The experimental results on a set of benchmarks show that our algorithm can produce much better results than the similar works of the previous approaches.

  • A More Efficient COPE Architecture for Network Coding in Multihop Wireless Networks

    Kaikai CHI  Xiaohong JIANG  Susumu HORIGUCHI  

     
    PAPER

      Vol:
    E92-B No:3
      Page(s):
    766-775

    Recently, a promising packet forwarding architecture COPE was proposed to essentially improve the throughput of multihop wireless networks, where each network node can intelligently encode multiple packets together and forward them in a single transmission. However, COPE is still in its infancy and has the following limitations: (1) COPE adopts the FIFO packet scheduling and thus does not provide different priorities for different types of packets. (2) COPE simply classifies all packets destined to the same nexthop into small-size or large-size virtual queues and examines only the head packet of each virtual queue to find coding solutions. Such a queueing structure will lose some potential coding opportunities, because among packets destined to the same nexthop at most two packets (the head packets of small-size and large-size queues) will be examined in the coding process, regardless of the number of flows. (3) The coding algorithm adopted in COPE is fast but cannot always find good solutions. In order to address the above limitations, in this paper we first present a new queueing structure for COPE, which can provide more potential coding opportunities, and then propose a new packet scheduling algorithm for this queueing structure to assign different priorities to different types of packets. Finally, we propose an efficient coding algorithm to find appropriate packets for coding. Simulation results demonstrate that this new COPE architecture can further greatly improve the node transmission efficiency.

  • Ant-Based Alternate Routing in All-Optical WDM Networks

    Son-Hong NGO  Xiaohong JIANG  Susumu HORIGUCHI  

     
    PAPER-Network

      Vol:
    E89-B No:3
      Page(s):
    748-755

    We propose an ant-based algorithm to improve the alternate routing scheme for dynamic Routing and Wavelength Assignment (RWA) in all-optical wavelength-division- multiplexing (WDM) networks. In our algorithm, we adopt a novel twin routing table structure that comprises both a P-route table for connection setup and a pheromone table for ants' foraging. The P-route table contains P alternate routes between a source-destination pair, which are dynamically updated by ant-based mobile agents based on current network congestion information. Extensive simulation results upon the ns-2 network simulator indicate that by keeping a suitable number of ants in a network to proactively and continually update the twin routing tables in the network, our new ant-based alternate routing algorithm can result in a small setup time and achieve a significantly lower blocking probability than the promising alternate shortest-path (ASP) algorithm and the fixed-paths least congestion (FPLC) algorithm for dynamic RWA even with a small value of P.

  • Lower-Bound on Blocking Probability of a Class of Crosstalk-Free Optical Cross-Connects (OXCs)

    Chen YU  Xiaohong JIANG  Susumu HORIGUCHI  

     
    PAPER-Network Protocols, Topology and Fault Tolerance

      Vol:
    E89-D No:2
      Page(s):
    719-727

    A combination of horizontal expansion and vertical stacking of optical Banyan (HVOB) is the general architecture for building Banyan-based optical cross-connects (OXCs), and the intrinsic crosstalk problem of optical signals is a major constraint in designing OXCs. In this paper, we analyze the blocking behavior of HVOB networks and develop the lower bound on blocking probability of a HVOB network that is free of first-order crosstalk in switching elements. The proposed lower-bound is significant because it provides network designers an effective tool to estimate the minimum blocking probability they can expect from a HVOB architecture regardless what kind of routing strategy to be adopted. Our lower bound can accurately depict the overall blocking behavior in terms of the minimum blocking probability in a HVOB network, as verified by extensive simulation based on a network simulator with both random routing and packing routing strategies. Surprisingly, the simulated and theoretical results show that our lower bound can be used to efficiently estimate the blocking probability of HVOB networks applying packing strategy. Thus, our analytical model can guide network designers to find the tradeoff among the number of planes (stacked copies), the number of SEs, the number of stages and blocking probability in a HVOB network applying packing strategy.

  • Hybrid Packet-Pheromone-Based Probabilistic Routing for Mobile Ad Hoc Networks

    Keyvan KASHKOULI NEJAD  Ahmed SHAWISH  Xiaohong JIANG  Susumu HORIGUCHI  

     
    PAPER-Network

      Vol:
    E92-B No:8
      Page(s):
    2610-2618

    Ad-Hoc networks are collections of mobile nodes communicating using wireless media without any fixed infrastructure. Minimal configuration and quick deployment make Ad-Hoc networks suitable for emergency situations like natural disasters or military conflicts. The current Ad-Hoc networks can only support either high mobility or high transmission rate at a time because they employ static approaches in their routing schemes. However, due to the continuous expansion of the Ad-Hoc network size, node-mobility and transmission rate, the development of new adaptive and dynamic routing schemes has become crucial. In this paper we propose a new routing scheme to support high transmission rates and high node-mobility simultaneously in a big Ad-Hoc network, by combining a new proposed packet-pheromone-based approach with the Hint Based Probabilistic Protocol (HBPP) for congestion avoidance with dynamic path selection in packet forwarding process. Because of using the available feedback information, the proposed algorithm does not introduce any additional overhead. The extensive simulation-based analysis conducted in this paper indicates that the proposed algorithm offers small packet-latency and achieves a significantly higher delivery probability in comparison with the available Hint-Based Probabilistic Protocol (HBPP).

  • Fair Scheduling for Delay-Sensitive VoIP Traffic

    Shawish AHMED  Xiaohong JIANG  Susumu HORIGUCHI  

     
    PAPER-Network

      Vol:
    E92-B No:10
      Page(s):
    3115-3125

    With the wide expansion of voice services over the IP networks (VoIP), the volume of this delay sensitive traffic is steadily growing. The current packet schedulers for IP networks meet the delay constraint of VoIP traffic by simply assigning its packets the highest priority. This technique is acceptable as long as the amount of VoIP traffic is relatively very small compared to other non-voice traffic. With the notable expansion of VoIP applications, however, the current packet schedulers will significantly sacrifice the fairness deserved by the non-voice traffic. In this paper, we extend the conventional Deficit Round-Robin (DRR) scheduler by including a packet classifier, a Token Bucket and a resource reservation scheme and propose an integrated packet scheduler architecture for the growing VoIP traffic. We demonstrate through both theoretical analysis and extensive simulation that the new architecture makes it possible for us to significantly improve the fairness to non-voice traffic while still meeting the tight delay requirement of VoIP applications.

  • Efficient Network Coding-Based Loss Recovery for Reliable Multicast in Wireless Networks

    Kaikai CHI  Xiaohong JIANG  Baoliu YE  Susumu HORIGUCHI  

     
    PAPER-Terrestrial Radio Communications

      Vol:
    E93-B No:4
      Page(s):
    971-981

    Recently, network coding has been applied to the loss recovery of reliable multicast in wireless networks, where multiple lost packets are XOR-ed together as one packet and forwarded via single retransmission, resulting in a significant reduction of bandwidth consumption. In this paper, we first prove that maximizing the number of lost packets for XOR-ing, which is the key part of the available network coding-based reliable multicast schemes, is actually a complex NP-complete problem. To address this limitation, we then propose an efficient heuristic algorithm for finding an approximately optimal solution of this optimization problem. Furthermore, we show that the packet coding principle of maximizing the number of lost packets for XOR-ing sometimes cannot fully exploit the potential coding opportunities, and we then further propose new heuristic-based schemes with a new coding principle. Simulation results demonstrate that the heuristic-based schemes have very low computational complexity and can achieve almost the same transmission efficiency as the current coding-based high-complexity schemes. Furthermore, the heuristic-based schemes with the new coding principle not only have very low complexity, but also slightly outperform the current high-complexity ones.

  • A Class of Benes-Based Optical Multistage Interconnection Networks for Crosstalk-Free Realization of Permutations

    Xiaohong JIANG  Pin-Han HO  Hong SHEN  Susumu HORIGUCHI  

     
    PAPER-Fiber-Optic Transmission for Communications

      Vol:
    E89-B No:1
      Page(s):
    19-27

    Vertical stacking is a novel technique for creating nonblocking (crosstalk-free) optical multistage interconnection networks (MINs). In this paper, we propose a new class of optical MINs, the vertically stacked Benes (VSB) networks, for crosstalk-free realization of permutations in a single pass. An NN VSB network requires at most O(Nlog N) switching elements, which is the same as the Benes network, and much lower overall hardware cost than that of the existing optical MINs built on the combination of horizontal expansion and vertical stacking of banyan networks, to provide the same crosstalk-free permutation capability. Furthermore, the structure of VSB networks provides a more flexible way for constructing optical MINs because they give more choices in terms of the number of stages used in an optical MIN. We also present efficient algorithms to realize crosstalk-free permutations in an NN VSB network in time O(Nlog N), which matches the same bound as required by the reported schemes.

  • Dynamic RWA Based on the Combination of Mobile Agents Technique and Genetic Algorithms in WDM Networks with Sparse Wavelength Conversion

    Vinh Trong LE  Xiaohong JIANG  Son Hong NGO  Susumu HORIGUCHI  

     
    PAPER

      Vol:
    E88-D No:9
      Page(s):
    2067-2078

    Genetic Algorithms (GA) provide an attractive approach to solving the challenging problem of dynamic routing and wavelength assignment (RWA) in optical Wavelength Division Multiplexing (WDM) networks, because they usually achieve a significantly low blocking probability. Available GA-based dynamic RWA algorithms were designed mainly for WDM networks with a wavelength continuity constraint, and they cannot be applied directly to WDM networks with wavelength conversion capability. Furthermore, the available GA-based dynamic RWA algorithms suffer from the problem of requiring a very time consuming process to generate the first population of routes for a request, which may results in a significantly large delay in path setup. In this paper, we study the dynamic RWA problem in WDM networks with sparse wavelength conversion and propose a novel hybrid algorithm for it based on the combination of mobile agents technique and GA. By keeping a suitable number of mobile agents in the network to cooperatively explore the network states and continuously update the routing tables, the new hybrid algorithm can promptly determine the first population of routes for a new request based on the routing table of its source node, without requiring the time consuming process associated with current GA-based dynamic RWA algorithms. To achieve a good load balance in WDM networks with sparse wavelength conversion, we adopt in our hybrid algorithm a new reproduction scheme and a new fitness function that simultaneously takes into account the path length, number of free wavelengths, and wavelength conversion capability in route selection. Our new hybrid algorithm achieves a better load balance and results in a significantly lower blocking probability than does the Fixed-Alternate routing algorithm, both for optical networks with sparse and full-range wavelength converters and for optical networks with sparse and limited-range wavelength converters. This was verified by an extensive simulation study on the ns-2 network simulator and two typical network topologies. The ability to guarantee both a low blocking probability and a small setup delay makes the new hybrid dynamic RWA algorithm very attractive for current optical circuit switching networks and also for the next generation optical burst switching networks.

  • Redundant Vias Insertion for Performance Enhancement in 3D ICs

    Xu ZHANG  Xiaohong JIANG  Susumu HORIGUCHI  

     
    PAPER

      Vol:
    E91-C No:4
      Page(s):
    571-580

    Three dimensional (3D) integrated circuits (ICs) have the potential to significantly enhance VLSI chip performance, functionality and device packing density. Interconnects delay and signal integrity issues are critical in chip design. In this paper, we extend the idea of redundant via insertion of conventional 2D ICs and propose an approach for vias insertion/placement in 3D ICs to minimize the propagation delay of interconnects with the consideration of signal integrity. The simulation results based on a 65 nm CMOS technology demonstrate that our approach in general can result in a 9% improvement in average delay and a 26% decrease in reflection coefficient. It is also shown that the proposed approach can be more effective for interconnects delay improvement when it is integrated with the buffer insertion in 3D ICs.

  • Statistical Skew Modeling and Clock Period Optimization of Wafer Scale H-Tree Clock Distribution Network

    Xiaohong JIANG  Susumu HORIGUCHI  

     
    PAPER

      Vol:
    E84-D No:11
      Page(s):
    1476-1485

    Available statistical skew models are too conservative in estimating the expected clock skew of a well-balanced H-tree. New closed form expressions are presented for accurately estimating the expected values and the variances of both the clock skew and the largest clock delay of a well-balanced H-tree. Based on the new model, clock period optimizations of wafer scale H-tree clock network are investigated under both conventional clocking mode and pipelined clocking mode. It is found that when the conventional clocking mode is used, clock period optimization of wafer scale H-tree is reduced to the minimization of expected largest clock delay under both area restriction and power restriction. On the other hand, when the pipelined clocking mode is considered, the optimization is reduced to the minimization of expected clock skew under power restriction. The results obtained in this paper are very useful in the optimization design of wafer scale H-tree clock distribution networks.

  • Maintaining Packet Order in Reservation-Based Shared-Memory Optical Packet Switch

    Xiaoliang WANG  Xiaohong JIANG  Susumu HORIGUCHI  

     
    PAPER-Switching for Communications

      Vol:
    E91-B No:9
      Page(s):
    2889-2896

    Shared-Memory Optical Packet (SMOP) switch architecture is very promising for significantly reducing the amount of required optical memory, which is typically constructed from fiber delay lines (FDLs). The current reservation-based scheduling algorithms for SMOP switches can effectively utilize the FDLs and achieve a low packet loss rate by simply reserving the departure time for each arrival packet. It is notable, however, that such a simple scheduling scheme may introduce a significant packet out of order problem. In this paper, we first identify the two main sources of packet out of order problem in the current reservation-based SMOP switches. We then show that by introducing a "last-timestamp" variable and modifying the corresponding FDLs arrangement as well as the scheduling process in the current reservation-based SMOP switches, it is possible to keep packets in-sequence while still maintaining a similar delay and packet loss performance as the previous design. Finally, we further extend our work to support the variable-length burst switching.

  • Throughput Capacity of MANETs with Group-Based Scheduling and General Transmission Range

    Juntao GAO  Jiajia LIU  Xiaohong JIANG  Osamu TAKAHASHI  Norio SHIRATORI  

     
    PAPER-Fundamental Theories for Communications

      Vol:
    E96-B No:7
      Page(s):
    1791-1802

    The capacity of general mobile ad hoc networks (MANETs) remains largely unknown up to now, which significantly hinders the development and commercialization of such networks. Available throughput capacity studies of MANETs mainly focus on either the order sense capacity scaling laws, the exact throughput capacity under a specific algorithm, or the exact throughput capacity without a careful consideration of critical wireless interference and transmission range issues. In this paper, we explore the exact throughput capacity for a class of MANETs, where we adopt group-based scheduling to schedule simultaneous link transmissions for interference avoidance and allow the transmission range of each node to be adjusted. We first determine a general throughput capacity upper bound for the concerned MANETs, which holds for any feasible packet delivery algorithm in such networks. We then prove that the upper bound we determined is just the exact throughput capacity for this class of MANETs by showing that for any traffic input rate within the throughput capacity upper bound, there exists a corresponding two-hop relay algorithm to stabilize such networks. A closed-form upper bound for packet delay is further derived under any traffic input rate within the throughput capacity. Finally, based on the network capacity result, we examine the impacts of transmission range and node density upon network capacity.

1-20hit(28hit)