This paper proposes a novel feature selection method for the fuzzy neural networks and presents an application example for 'personalized' facial expression recognition. The proposed method is shown to result in a superior performance than many existing approaches.
Heeyoung JUNG Moneeb GOHAR Ji-In KIM Seok-Joo KOH
In future mobile networks, the ever-increasing loads imposed by mobile Internet traffic will force the network architecture to be changed from hierarchical to flat structure. Most of the existing mobility protocols are based on a centralized mobility anchor, which will process all control and data traffic. In the flat network architecture, however, the centralized mobility scheme has some limitations, such as unwanted traffic flowing into the core network, service degradation by a single point of failure, and increased operational costs, etc. This paper proposes mobility schemes for distributed mobility control in the flat network architecture. Based on the Proxy Mobile IPv6 (PMIP), which is a well-known mobility protocol, we propose the three mobility schemes: Signal-driven PMIP (S-PMIP), Data-driven Distributed PMIP (DD-PMIP), and Signal-driven Distributed PMIP (SD-PMIP). By numerical analysis, we show that the proposed distributed mobility schemes can give better performance than the existing centralized scheme in terms of the binding update and packet delivery costs, and that SD-PMIP provides the best performance among the proposed distributed schemes.
Sang-Jin KIM Jong-Jin KIM Minsoo HAHN
Development of a hidden Markov model (HMM)-based Korean speech synthesis system and its evaluation is described. Statistical HMM models for Korean speech units are trained with the hand-labeled speech database including the contextual information about phoneme, morpheme, word phrase, utterance, and break strength. The developed system produced speech with a fairly good prosody. The synthesized speech is evaluated and compared with that of our corpus-based unit concatenating Korean text-to-speech system. The two systems were trained with the same manually labeled speech database.
Na Young KIM Sujin KIM Youngok KIM Joonhyuk KANG
This letter proposes a high precision ranging scheme based on the time of arrival estimation technique for the IEEE 802.15.4a chirp spread spectrum system. The proposed scheme consists of a linear channel impulse response estimation process with the zero forcing or minimum mean square error technique and the multipath delay estimation process with matrix pencil algorithm. The performance of the proposed scheme is compared with that of a well known MUSIC algorithm in terms of computational complexity and ranging precision. Simulation results demonstrate that the proposed scheme outperforms the MUSIC algorithm even though it has comparatively lower computational complexity.
Jongin KIM Dongwoo KIM Sehun KIM
The capacity of multiuser OFDM systems can be maximized by allocating resources (subcarrier and power) to the user with the highest instantaneous channel gain. This assumes complete channel state information (CSI) at the transmitter, which is achieved by every user reporting its CSI for all subcarriers to the transmitter via feedback channel. In practice, due to the limited capacity of the feedback channel, the completeness of CSI may be severely restricted especially with a large number of users transmitting a large amount of feedback information. In order to reduce the amount of feedback information while preserving the maximal capacity, quality based CSI feedback (QCF) is proposed in this letter. The system capacity is derived with QCF and compared with that of full CSI feedback. The results show that QCF successfully reduces the amount of feedback information with little capacity loss.
Sangchul OH Namhoon PARK Ohjun KWON Yeongjin KIM
In this paper, we have shown a major element occupying the large portion of software communications architecture (SCA)-based software defined radio (SDR) handheld embedded system and an important feature for implementing a high speed broadband radio to an SCA waveform through a couple of experiments. First, this paper identifies the main items possessing the large portion of SCA-based SDR handheld embedded system by the experiment on the target platform which is similar to a commercial mobile handheld system. Both the world interoperabillity for microwave access (WiMAX) and high speed downlink packet access (HSDPA) waveform software packages are used as an SCA waveform application. This paper also presents the results of the relative binary size distribution of SCA software resources for looking for the major elements making an SCA-based SDR handheld embedded system heavier. As a result, when focusing on the relative weight portion of SCA core framework (CF), the SCA CF takes 16% up and others have 84% out of the whole binary size distribution of SCA software resources. The results of the experiment give us notice that the weight portion of SCA CF is minor and compatible with the overall software binary size needs of an SCA-based SDR handheld embedded system, on the other hand, the practical problem on the lightweight is in a common object request broker architecture (CORBA) and extensible markup language (XML) parser resources. Second, this paper describes an important feature for implementing a high speed broadband radio to an SCA waveform and presents the performance evaluation results of the SCA port communication on both power PC (PPC) 405 and x86 processor platforms. The PPC 405 platform, which is similar to a commercial mobile handset, takes the value of average round trip time (RTT) with a maximum of thirty six millisecond. The x86 platform, however, which is analogous to a server platform, maintains stable micro-second resolution. From our experiments, we observe that rapid SCA port communication, sufficiently less than the frame length of high-speed broadband radios, should be provided for serving those radio services in a commercial handheld system based on the SCA.
Hyoungsuk JEON Sooyeol IM Youmin KIM Seunghee KIM Jinup KIM Hyuckjae LEE
The public safety spectrum is generally under-utilized due to the unique traffic characteristics of bursty and mission critical. This letter considers the application of dynamic spectrum access (DSA) to the combined spectrum of public safety (PS) and commercial (CMR) users in a common shared network that can provide both PS and CMR services. Our scenario includes the 700 MHz Public/Private Partnership which was recently issued by the Federal Communications Commission. We first propose an efficient DSA mechanism to coordinate the combined spectrum, and then establish a call admission control that reflects the proposed DSA in a wideband code division multiple access based network. The essentials of our proposed DSA are opportunistic access to the public safety spectrum and priority access to the commercial spectrum. Simulation results show that these schemes are well harmonized in various network environments.
Dae-Hwi LEE Won-Bin KIM Deahee SEO Im-Yeong LEE
Lightweight cryptographic systems for services delivered by the recently developed Internet of Things (IoT) are being continuously researched. However, existing Public Key Infrastructure (PKI)-based cryptographic algorithms are difficult to apply to IoT services delivered using lightweight devices. Therefore, encryption, authentication, and signature systems based on Certificateless Public Key Cryptography (CL-PKC), which are lightweight because they do not use the certificates of existing PKI-based cryptographic algorithms, are being studied. Of the various public key cryptosystems, signcryption is efficient, and ensures integrity and confidentiality. Recently, CL-based signcryption (CL-SC) schemes have been intensively studied, and a multi-receiver signcryption (MRSC) protocol for environments with multiple receivers, i.e., not involving end-to-end communication, has been proposed. However, when using signcryption, confidentiality and integrity may be violated by public key replacement attacks. In this paper, we develop an efficient CL-based MRSC (CL-MRSC) scheme using CL-PKC for IoT environments. Existing signcryption schemes do not offer public verifiability, which is required if digital signatures are used, because only the receiver can verify the validity of the message; sender authenticity is not guaranteed by a third party. Therefore, we propose a CL-MRSC scheme in which communication participants (such as the gateways through which messages are transmitted) can efficiently and publicly verify the validity of encrypted messages.
Hyungjin KIM Min-Chul SUN Hyun Woo KIM Sang Wan KIM Garam KIM Byung-Gook PARK
Although the Tunnel Field-Effect Transistor (TFET) is a promising device for ultra-low power CMOS technology due to the ability to reduce power supply voltage and very small off-current, there have been few reports on the control of VT for TFETs. Unfortunately, the TFET needs a different technique to adjust VT than the MOSFET by channel doping because most of TFETs are fabricated on SOI substrates. In this paper, we propose a technique to control VT of the TFET by putting an additional VT-control doping region (VDR) between source and channel. We examine how much VT is changed by doping concentration of VDR. The change of doping concentration modulates VT because it changes the semiconductor work function difference, ψs,channel-ψs,source, at off-state. Also, the effect of the size of VDR is investigated. The region can be confined to the silicon surface because most of tunneling occurs at the surface. At the same time, we study the optimum width of this region while considering the mobility degradation by doping. Finally, the effect of the SOI thickness on the VDR adjusted VT of TFET is also investigated.
ByungBog LEE IlKwon CHO Se-Jin KIM
An interference-aware dynamic channel assignment scheme is proposed with consideration of co-tier interference for the downlink of an OFDMA/FDD based dense small-cell network. The proposed scheme adaptively assigns subchannels to the small-cell user equipment (SUE) according to the given traffic load and interference effect from neighbor small-cell access points. The simulation results show that the proposed scheme outperforms the other schemes based on the graph coloring algorithm in terms of the mean SUE capacity.
Muhamad Erza AMINANTO HakJu KIM Kyung-Min KIM Kwangjo KIM
Attacks against computer networks are evolving rapidly. Conventional intrusion detection system based on pattern matching and static signatures have a significant limitation since the signature database should be updated frequently. The unsupervised learning algorithm can overcome this limitation. Ant Clustering Algorithm (ACA) is a popular unsupervised learning algorithm to classify data into different categories. However, ACA needs to be complemented with other algorithms for the classification process. In this paper, we present a fuzzy anomaly detection system that works in two phases. In the first phase, the training phase, we propose ACA to determine clusters. In the second phase, the classification phase, we exploit a fuzzy approach by the combination of two distance-based methods to detect anomalies in new monitored data. We validate our hybrid approach using the KDD Cup'99 dataset. The results indicate that, compared to several traditional and new techniques, the proposed hybrid approach achieves higher detection rate and lower false positive rate.
James (Sungjin) KIM Hojin KIM Chang Soon PARK Kwang Bok LEE
Recently, a number of techniques have been introduced to exploit multiuser diversity of a wireless multiple-input multiple-output (MIMO) broadcast channel (BC) that consists of a base station with t transmit antennas and K users with multiple antennas. However, prior works have ignored the rate overhead associated with feedback of MIMO BC channel state information at transmitter (CSIT), which is roughly K times larger than single-user MIMO CSIT (i.e., it is O(tr) where r = rk and rk is the number of antennas at the kth user). Considering the amount of feedback signaling, quantization is a necessity for effective feedback transmission as a form of partial CSIT. In this paper, we propose the greedy multi-channel selection diversity (greedy MCSD) scheme based on block MMSE QR decomposition with dirty paper coding (block MMSE-DP), where partial CSIT is almost sufficient. The sum-rate performance of our novel scheme approaches extremely close to the sum capacity of MIMO BC as the number of users increases, whereas the feedback overhead is reduced by a factor of 2t3/L(t2-t), in which L is the number of active channel vectors. Simulation results validate the expectation from the analysis. In addition, the proposed scheme is shown to be appropriate for reconfigurable implementation.
Sangjin KIM Jihwan LIM Jaehong HAN Heekuck OH
In an RFID search protocol, a reader uses a designated query instead of an unspecified query commonly used in RFID authentication protocols. Due to this fundamental difference, techniques used in RFID authentication protocols may not be suitable for RFID search protocols. Tan et al.'s protocol, however, is based on techniques used in previous works such as using random values. In this paper, we propose two RFID search protocols, one based on static ID and the other based on dynamic ID, both which does not require additional measures to satisfy security requirements of RFID protocols. We achieve this by using counters.
In this letter, we first provide the closed-form exact outage probability of opportunistic single relay selection in decode-and-forward (DF) relaying with the direct source-destination link under arbitrarily distributed Rayleigh fading channels. The signals from the source and the selected relay are combined at the destination by using maximal ratio combining (MRC). We derive the probability density function (PDF) and the cumulative density function (CDF) of received SNR at the destination. Numerical results show that the analytic results exactly match with the simulated ones.
Han-A-Reum JUNG Kyoung-Rok HAN Young-Min KIM Jong-Ho LEE
A new SONOS flash memory device with recess channel and side-gate was proposed and designed in terms of recess depth, doping profile, and side-gate length for sub-40 nm flash memory technology. The key features of the devices were characterized through 3-dimensional device simulation. This cell structure can store 2 or more bits of data in a cell when it is applied to NOR flash memory. It was shown that channel doping profile is very important depending on NOR or NAND applications. In NOR flash memory application, the localized channel doping under the source/drain junction is very important in designing threshold voltage (Vth) and suppression of drain induced barrier lowering (DIBL). In our work, this cell structure is studied not only for NAND flash memory application but also for NOR flash application. The device design was performed in terms of electrical characteristics (Vth, DIBL and SS) by considering device structure and doping profile of the cell.
Dong-Sup SONG Jin-Ho AHN Tae-Jin KIM Sungho KANG
This paper proposes the minimum transition random X-filling (MTR-fill) technique, which is a new X-filling method, to reduce the amount of power dissipation during scan-based testing. In order to model the amount of power dissipated during scan load/unload cycles, the total weighted transition metric (TWTM) is introduced, which is calculated by the sum of the weighted transitions in a scan-load of a test pattern and a scan-unload of a test response. The proposed MTR-fill is implemented by simulated annealing method. During the annealing process, the TWTM of a pair of test patterns and test responses are minimized. Simultaneously, the MTR-fill attempts to increase the randomness of test patterns in order to reduce the number of test patterns needed to achieve adequate fault coverage. The effectiveness of the proposed technique is shown through experiments for ISCAS'89 benchmark circuits.
Euijin KIM Miki HASEYAMA Hideo KITAJIMA
This paper presents a new fast and robust circle extraction method that is capable of extracting circles from images with complicated backgrounds. It is not based on the Hough transform (HT) that requires a time-consuming voting process. The proposed method uses a least-squares circle fitting algorithm for extracting circles. The arcs are fitted by extended digital lines that are extracted by a fast line extraction method. The proposed method calculates accurate circle parameters using the fitted arcs instead of evidence histograms in the parameter space. Tests performed on various real-world images show that the proposed method quickly and accurately extracts circles from complicated and heavily corrupted images.
Yoojin KIM Yongwoon SONG Hyukjun LEE
An accurate but energy-efficient estimation of a position is important as the number of mobile computing systems grow rapidly. A challenge is to develop a highly accurate but energy efficient estimation method. A particle filter is a key algorithm to estimate and track the position of an object which exhibits non-linear movement behavior. However, it requires high usage of computation resources and energy. In this paper, we propose a scheme which can dynamically adjust the number of particles according to the accuracy of the reference signal for positioning and reduce the energy consumption by 37% on Cortex A7.
In recent years, heterogeneous devices have been employed frequently in mobile storage systems because a combination of such devices can supply a synergistically useful storage solution by taking advantage of each device. One important design constraint in heterogeneous storage systems is to mitigate I/O performance degradation stemming from the difference between access times of different devices. To this end, there has not been much work to devise proper buffer cache management algorithms. This paper presents a novel buffer cache management algorithm which considers both I/O cost per device and workload patterns in mobile computing systems with a heterogeneous storage pair of a hard disk and a NAND flash memory. In order to minimize the total I/O cost under varying workload patterns, the proposed algorithm employs a dynamic cache partitioning technique over different devices and manages each partition according to request patterns and I/O types along with the temporal locality. Trace-based simulations show that the proposed algorithm reduces the total I/O cost and flash write count significantly over the existing buffer cache algorithms on typical mobile traces.
Dong-Guk HAN Katsuyuki OKEYA Tae Hyun KIM Yoon Sung HWANG Beomin KIM Young-Ho PARK
We propose a new analysis technique against a class of countermeasure using randomized binary signed digit (BSD) representations. We also introduce some invariant properties between BSD representations. The proposed analysis technique can directly recover the secret key from power measurements without information for algorithm because of the invariant properties of BSD representation. Thus the proposed attack is applicable to all countermeasures using BSD representations. Finally, we give the simulation results against some countermeasures using BSD representation such as Ha-Moon method, Ebeid-Hasan method, and the method of Agagliate et al. The results show that the proposed attack is practical analysis method.