1-9hit |
Kai HUANG Zhikuang CAI Xin CHEN Longxing SHI
This paper proposes a novel delay-locked loop (DLL) with fast-locking property. The improved fast-locking successive approximation register-controlled (IFSAR) scheme can decrease the locking time to n+4 periods and be harmonic-free, where n is the bits' number of the control code for a delay line. According to the simulation result in 180 nm CMOS technology, the DLL can cover the operating range from 70 MHz to 500 MHz and dissipate 10.44 mW at 500 MHz.
Providing data availability in a high performance computing environment is very important, especially in this data-intensive world. Most clusters either equip with RAID (Redundant Array of Independent Disks) devices or use redundant nodes to protect data from loss. However, neither of these can really solve the reliability problem incurred in a striped file system. Striping provides an efficient way to increase I/O throughput both in the distributed and parallel paradigms. But it also reduces the overall reliability of a disk system by N fold, where N is the number of independent disks in the system. Parallel Virtual File System (PVFS) is an open source parallel file system which has been widely used in the Linux environment. Its striping structure is good for performance but provides no fault tolerance. We implement Reliable Parallel File System (RPFS) based on PVFS but with reliability support. Our quantitative analysis shows that MTTF (Mean Time To Failure) of our RPFS is better than that of PVFS. Besides, we propose a parity cache table (PCT) to alleviate the penalty of parity updating. The evaluation of our RPFS shows that its read performance is almost the same as that of PVFS (2% to 13% degradation). As to the write performance, 28% to 45% improvement can be achieved depending on the behavior of the operations.
Hang ZHANG Yong DING Peng Wei WU Xue Tong BAI Kai HUANG
Visual quality evaluation is crucially important for various video and image processing systems. Traditionally, subjective image quality assessment (IQA) given by the judgments of people can be perfectly consistent with human visual system (HVS). However, subjective IQA metrics are cumbersome and easily affected by experimental environment. These problems further limits its applications of evaluating massive pictures. Therefore, objective IQA metrics are desired which can be incorporated into machines and automatically evaluate image quality. Effective objective IQA methods should predict accurate quality in accord with the subjective evaluation. Motivated by observations that HVS is highly adapted to extract irregularity information of textures in a scene, we introduce multifractal formalism into an image quality assessment scheme in this paper. Based on multifractal analysis, statistical complexity features of nature images are extracted robustly. Then a novel framework for image quality assessment is further proposed by quantifying the discrepancies between multifractal spectrums of images. A total of 982 images are used to validate the proposed algorithm, including five type of distortions: JPEG2000 compression, JPEG compression, white noise, Gaussian blur, and Fast Fading. Experimental results demonstrate that the proposed metric is highly effective for evaluating perceived image quality and it outperforms many state-of-the-art methods.
Kai HUANG Min YU Xiaomeng ZHANG Dandan ZHENG Siwen XIU Rongjie YAN Kai HUANG Zhili LIU Xiaolang YAN
The increasing complexity of embedded applications and the prevalence of multiprocessor system-on-chip (MPSoC) introduce a great challenge for designers on how to achieve performance and programmability simultaneously in embedded systems. Automatic multithreaded code generation methods taking account of performance optimization techniques can be an effective solution. In this paper, we consider the issue of increasing processor utilization and reducing communication cost during multithreaded code generation from Simulink models to improve system performance. We propose a combination of three-layered multithreaded software with Integer Linear Programming (ILP) based design-time mapping and scheduling policies to get optimal performance. The hierarchical software with a thread layer increases processor usage, while the mapping and scheduling policies formulate a group of integer linear programming formulations to minimize communication cost as well as to maximize performance. Experimental results demonstrate the advantages of the proposed techniques on performance improvements.
Chi-Chia SUN Ming-Hwa SHEU Jui-Yang CHI Yan-Kai HUANG
In this paper, a nonoverlapping multi-camera and people re-identification algorithm is proposed. It applies inflated major color features for re-identification to reduce computation time. The inflated major color features can dramatically improve efficiency while retaining high accuracy of object re-identification. The proposed method is evaluated over a wide range of experimental databases. The accuracy attains upwards of 40.7% in Rank 1 and 84% in Rank 10 on average, while it obtains three to 15 times faster than algorithms reported in the literature. The proposed algorithm has been implemented on a SOC-FPGA platform to reach 50 FPS with 1280×720 HD resolution and 25 FPS with 1920×1080 FHD resolution for real-time processing. The results show a performance improvement and reduction in computation complexity, which is especially ideal for embedded platform.
Fuh-Shyang JUANG Apisit CHITTAWANIJ Lin-Ann HONG Yu-Sheng TSAI Kuo-Kai HUANG
This paper presents 2-(hydroxyl) quinoline lithium (Liq) used as an n-type dopant to improve white hybrid organic light-emitting diode (WHOLEDs) performance. The Liq doped tris(8-hydroxyquinolinato) aluminum (Alq$_{3})$ layer possessed enhanced electron injection, efficient hole and electron balance in the emitting layer, as one of the most essential issues for device applications. This work investigates the optimum recipe (Liq concentration and thickness) of Alq$_{3}$:Liq n-type doped electron injection layer (EIL) for WHOLED devices by comparing the current density and efficiency results with conventional Alq$_{3}$/LiF technique. A blocking layer or interlayer is inserted between emitting layer and EIL to avoid excitons quenched. In this work suitable material and optimum thickness for blocking layer are studied, a white small-molecular organic light-emitting diode (SM-OLEDs) based on a 1,3,5-tris (N-phenylbenzimidazol-2-yl) benzene (TPBi) stamping transfer process is investigated. The proposed stamping transfer process can avoid the complexity of the vacuum deposition process.
We propose a novel network traffic matrix decomposition method named Stable Principal Component Pursuit with Frequency-Domain Regularization (SPCP-FDR), which improves the Stable Principal Component Pursuit (SPCP) method by using a frequency-domain noise regularization function. An experiment demonstrates the feasibility of this new decomposition method.
Kai HUANG Ming XU Shaojing FU Yuchuan LUO
In a previous work [1], Wang et al. proposed a privacy-preserving outsourcing scheme for biometric identification in cloud computing, namely CloudBI. The author claimed that it can resist against various known attacks. However, there exist serious security flaws in their scheme, and it can be completely broken through a small number of constructed identification requests. In this letter, we modify the encryption scheme and propose an improved version of the privacy-preserving biometric identification design which can resist such attack and can provide a much higher level of security.
ShuKai HU Chao CHEN Rong SUN XinMei WANG
Quasi-cyclic (QC) low-density parity-check (LDPC) codes have several appealing properties regarding decoding, storage requirements and encoding aspects. In this paper, we focus on the QC LDPC codes over GF(q) whose parity-check matrices have fixed column weight j = 2. By investigating two subgraphs in the Tanner graphs of the corresponding base matrices, we derive two upper bounds on the minimum Hamming distance for this class of codes. In addition, a method is proposed to construct QC LDPC codes over GF(q), which have good Hamming distance distributions. Simulations show that our designed codes have good performance.