The search functionality is under construction.
The search functionality is under construction.

Author Search Result

[Author] Kazuyuki AIHARA(30hit)

1-20hit(30hit)

  • Asynchronous Pulse Neural Network Model for VLSI Implementation

    Mitsuru HANAGATA  Yoshihiko HORIO  Kazuyuki AIHARA  

     
    PAPER-Neural Networks

      Vol:
    E81-A No:9
      Page(s):
    1853-1859

    An asynchronous pulse neural network model which is suitable for VLSI implementation is proposed. The model neuron can function as a coincidence detector as well as an integrator depending on its internal time-constant relative to the external one, and show complex dynamical behavior including chaotic responses. A network with the proposed neurons can process spatio-temporal coded information through dynamical cell assemblies with functional synaptic connections.

  • Nonlinear Modeling by Radial Basis Function Networks

    Satoshi OGAWA  Tohru IKEGUCHI  Takeshi MATOZAKI  Kazuyuki AIHARA  

     
    PAPER-Neural Nets and Human Being

      Vol:
    E79-A No:10
      Page(s):
    1608-1617

    Deterministic nonlinear prediction is applied to both artificial and real time series data in order to investigate orbital-instabilities, short-term predictabilities and long-term unpredictabilities, which are important characteristics of deterministic chaos. As an example of artificial data, bimodal maps of chaotic neuron models are approximated by radial basis function networks, and the approximation abilities are evaluated by applying deterministic nonlinear prediction, estimating Lyapunov exponents and reconstructing bifurcation diagrams of chaotic neuron models. The functional approximation is also applied to squid giant axon response as an example of real data. Two metnods, the standard and smoothing interpolation, are adopted to construct radial basis function networks; while the former is the conventional method that reproduces data points strictly, the latter considers both faithfulness and smoothness of interpolation which is suitable under existence of noise. In order to take a balance between faithfulness and smoothness of interpolation, cross validation is applied to obtain an optimal one. As a result, it is confirmed that by the smoothing interpolation prediction performances are very high and estimated Lyapunov exponents are very similar to actual ones, even though in the case of periodic responses. Moreover, it is confirmed that reconstructed bifurcation diagrams are very similar to the original ones.

  • Improving Image Segmentation by Chaotic Neurodynamics

    Mikio HASEGAWA  Tohru IKEGUCHI  Takeshi MATOZAKI  Kazuyuki AIHARA  

     
    PAPER-Neural Nets and Human Being

      Vol:
    E79-A No:10
      Page(s):
    1630-1637

    We propose a novel segmentation algorithm which combines an image segmentation method into small regions with chaotic neurodynamics that has already been clarified to be effective for solving some combinatorial optimization problems. The basic algorithm of an image segmentation is the variable-shape-bloch-segmentation (VB) which searches an opti-mal state of the segmentation by moving the vertices of quadran-gular regions. However, since the algorithm for moving vertices is based upon steepest descent dynamics, this segmentation method has a local minimum problem that the algorithm gets stuck at undesirable local minima. In order to treat such a problem of the VB and improve its performance, we introduce chaotic neurodynamics for optimization. The results of our novel method are compared with those of conventional stochastic dynamics for escaping from undesirable local minima. As a result, the better results are obtained with the chaotic neurodynamical image segmentation.

  • The f(α) Spectrum of a Chaotic Neuron Model

    Tohru IKEGUCHI  Kazuyuki AIHARA  Takeshi MATOZAKI  

     
    LETTER

      Vol:
    E74-A No:6
      Page(s):
    1476-1478

    We analyse a mathematical neuron model with chaotic dynamics, or a chaotic neuron model by the generalized dimensions and the f(α) spectrum. The results show that the multi-fractal structure of a chaotic neuron model can be quantified by the f(α) spectrum.

  • A Current-Mode Implementation of a Chaotic Neuron Model Using a SI Integrator

    Nobuo KANOU  Yoshihiko HORIO  Kazuyuki AIHARA  Shogo NAKAMURA  

     
    LETTER-Nonlinear Circuits and Systems

      Vol:
    E77-A No:1
      Page(s):
    335-338

    This paper presents an improved current-mode circuit for implementation of a chaotic neuron model. The proposed circuit uses a switched-current integrator and a nonlinear output function circuit, which is based on an operational transconductance amplifier, as building blocks. Is is shown by SPICE simulations and experiments using discrete elements that the proposed circuit well replicates the behavior of the chaotic neuron model.

  • A Neuronal Time Window for Coincidence Detection

    Yuichi SAKUMURA  Kazuyuki AIHARA  

     
    PAPER-Neural Networks

      Vol:
    E81-A No:9
      Page(s):
    1818-1823

    Though response of neurons is mainly decided by synaptic events, the length of a time window for the neuronal response has still not been clarified. In this paper, we analyse the time window within which a neuron processes synaptic events, on the basis of the Hodgkin-Huxley equations. Our simulation shows that an active membrane property makes neurons' behavior complex, and that a few milliseconds is plausible as the time window. A neuron seems to detect coincidence synaptic events in such a time window.

  • A Phenomenon Like Stochastic Resonance in the Process of Spike-Timing Dependent Synaptic Plasticity

    Tadayoshi FUSHIKI  Kazuyuki AIHARA  

     
    LETTER-Neural Networks and Bioengineering

      Vol:
    E85-A No:10
      Page(s):
    2377-2380

    Recent physiological studies on synaptic plasticity have shown that synaptic weights change depending on fine timing of presynaptic and postsynaptic spikes. Here, we show that a phenomenon similar to stochastic resonance with respect to background noise is observed on spike-timing dependent synaptic plasticity (STDP) that can contribute to stable propagation of precisely timed spikes in a multi-layered feedforward neural network.

  • Optimization by Neural Networks in the Coherent Ising Machine and its Application to Wireless Communication Systems Open Access

    Mikio HASEGAWA  Hirotake ITO  Hiroki TAKESUE  Kazuyuki AIHARA  

     
    INVITED PAPER-Wireless Communication Technologies

      Pubricized:
    2020/09/01
      Vol:
    E104-B No:3
      Page(s):
    210-216

    Recently, new optimization machines based on non-silicon physical systems, such as quantum annealing machines, have been developed, and their commercialization has been started. These machines solve the problems by searching the state of the Ising spins, which minimizes the Ising Hamiltonian. Such a property of minimization of the Ising Hamiltonian can be applied to various combinatorial optimization problems. In this paper, we introduce the coherent Ising machine (CIM), which can solve the problems in a milli-second order, and has higher performance than the quantum annealing machines especially on the problems with dense mutual connections in the corresponding Ising model. We explain how a target problem can be implemented on the CIM, based on the optimization scheme using the mutually connected neural networks. We apply the CIM to traveling salesman problems as an example benchmark, and show experimental results of the real machine of the CIM. We also apply the CIM to several combinatorial optimization problems in wireless communication systems, such as channel assignment problems. The CIM's ultra-fast optimization may enable a real-time optimization of various communication systems even in a dynamic communication environment.

  • Chaos in Discrete Systems and Diagnosis of Experimental Chaos

    Tohru KOHDA  Kazuyuki AIHARA  

     
    INVITED PAPER

      Vol:
    E73-E No:6
      Page(s):
    772-783

    A review is presented of the definitions of 'chaos' in the discrete system, the diagnosing methods of chaotic systems, and examples of engineering and/or biological chaos. First, enumerating physically intuitive pictures of one-dimensional chaos shows that there are many possible definitions of 'chaos' and that the 'observable chaos' is an important concept. Important roles of the Frobenius-Perron operator are discussed in theoretically studying statistical quantities of a completely chaotic orbit. In order to measure chaos, several quantities of a strange attractor are listed. Some of chaotic maps are shown to be applicable to a pseudorandom number generator. To examine biological chaos, macroscopic analyses and microscopic ones well be reviewed.

  • Dynamical Calling Behavior Experimentally Observed in Japanese Tree Frogs (Hyla japonica)

    Ikkyu AIHARA  Shunsuke HORAI  Hiroyuki KITAHATA  Kazuyuki AIHARA  Kenichi YOSHIKAWA  

     
    PAPER-Nonlinear Phenomena and Analysis

      Vol:
    E90-A No:10
      Page(s):
    2154-2161

    We recorded time series data of calls of Japanese tree frogs (Hyla japonica; Nihon-Ama-Gaeru) and examined the dynamics of the experimentally observed data not only through linear time series analysis such as power spectra but also through nonlinear time series analysis such as reconstruction of orbits with delay coordinates and different kinds of recurrence plots, namely the conventional recurrence plot (RP), the iso-directional recurrence plot (IDRP), and the iso-directional neighbors plot (IDNP). The results show that a single frog called nearly periodically, and a pair of frogs called nearly periodically but alternately in almost anti-phase synchronization with little overlap through mutual interaction. The fundamental frequency of the calls of a single frog during the interactive calling between two frogs was smaller than when the same frog first called alone. We also used the recurrence plots to study nonlinear and nonstationary determinism in the transition of the calling behavior. Moreover, we quantified the determinism of the nonlinear and nonstationary dynamics with indices of the ratio R of the number of points in IDNP to that in RP and the percentage PD of contiguous points forming diagonal lines in RP by the recurrence quantification analysis (RQA). Finally, we discuss a possibility of mathematical modeling of the calling behavior and a possible biological meaning of the call alternation.

  • An Analysis on Additive Effects of Nonlinear Dynamics for Combinatorial Optimization

    Mikio HASEGAWA  Tohru IKEGUCHI  Takeshi MATOZAKI  Kazuyuki AIHARA  

     
    PAPER-Neural Networks

      Vol:
    E80-A No:1
      Page(s):
    206-213

    We analyze additive effects of nonlinear dynamics for conbinatorial optimization. We apply chaotic time series as noise sequence to neural networks for 10-city and 20-city traveling salesman problems and compare the performance with stochastic processes, such as Gaussian random numbers, uniform random numbers, 1/fα noise and surrogate data sets which preserve several statistics of the original chaotic data. In result, it is shown that not only chaotic noise but also surrogates with similar autocorrelation as chaotic noise exhibit high solving abilities. It is also suggested that since temporal structure of chaotic noise characterized by autocorrelation affects abilities for combinatorial optimization problems, effects of chaotic sequence as additive noise for escaping from undesirable local minima in case of solving combinatorial optimization problems can be replaced by stochastic noise with similar autocorrelation.

  • IC Implementation of a Switched-Current Chaotic Neuron

    Ruben HERRERA  Ken SUYAMA  Yoshihiko HORIO  Kazuyuki AIHARA  

     
    PAPER

      Vol:
    E82-A No:9
      Page(s):
    1776-1782

    A switched-current integrated circuit, which realizes the chaotic neuron model, is presented. The circuit mainly consists of CMOS inverters that are used as transconductance amplifiers and nonlinear elements. The chip was fabricated using a 1.2 µm HP CMOS process. A single neuron cell occupies only 0.0076 mm2, which represents an area smaller than the one occupied by a standard bonding pad. The circuit operation was tested at a clock frequency of 2 MHz.

  • Analog Hardware Implementation of a Mathematical Model of an Asynchronous Chaotic Neuron

    Jun MATSUOKA  Yoshifumi SEKINE  Katsutoshi SAEKI  Kazuyuki AIHARA  

     
    PAPER

      Vol:
    E85-A No:2
      Page(s):
    389-394

    A number of studies have recently been published concerning chaotic neuron models and asynchronous neural networks having chaotic neuron models. In the case of large-scale neural networks having chaotic neuron models, the neural network should be constructed using analog hardware, rather than by computer simulation via software, due to the high speed and high integration of analog circuits. In the present study, we discuss the circuit structure of a chaotic neuron model, which is constructed on the basis of the mathematical model of an asynchronous chaotic neuron. We show that the pulse-type hardware chaotic neuron model can be constructed on the basis of the mathematical model of an asynchronous chaotic neuron. The proposed model is an effective model for the cell body section of the pulse-type hardware chaotic neuron model for ICs. In addition, we show the bifurcation structure of our composed model, and discuss the bifurcation routes and return maps thereof.

  • On Dimension Estimates with Surrogate Data Sets

    Tohru IKEGUCHI  Kazuyuki AIHARA  

     
    PAPER-Nonlinear Problems

      Vol:
    E80-A No:5
      Page(s):
    859-868

    In this paper, we propose a new strategy of estimating correlation dimensions in combination with the method of surrogate data, which is a kind of statistical control usually introduced to avoid spurious estimates of nonlinear statistics, such as fractal dimensions, Lyapunov exponents and so on. In the case of analyzing time series with the method of surrogate data, it is desirable to decide values of estimated nonlinear statistics of the original data and surrogate data sets as exactly as possible. However, when dimensional analysis is applied to possible attractors reconstructed from real time series, it is very dangerous to decide a single value as the estimated dimensions and desirable to analyze its scaling property for avoiding spurious estimates. In order to solve this defficulty, a dimension estimator algorithm and the method of surrogate data are combined by introducing Monte Carlo hypothesis testing. In order to show effectiveness of the new strategy, firstly artificial time series are analyzed, such as the Henon map with additive noise, filtered random numbers and filtered random numbers transformed by a static monotonic nonlinearity, and then experimental time series are also examined, such as wolfer's sunspot numbers and the fluctuations in a farinfrared laser data.

  • Prediction of Chaotic Time Series with Noise

    Tohru IKEGUCHI  Kazuyuki AIHARA  

     
    PAPER

      Vol:
    E78-A No:10
      Page(s):
    1291-1298

    In this paper, we propose algorithm of deterministic nonlinear prediction, or a modified version of the method of analogues which was originally proposed by E.N. Lorenz (J. Atom. Sci., 26, 636-646, 1969), and apply it to the artificial time series data produced from nonlinear dynamical systems and further corrupted by superimposed observational noise. The prediction performance of the present method are investigated by calculating correlation coefficients, root mean square errors and signature errors and compared with the prediction algorithm of local linear approximation method. As a result, it is shown that the prediction performance of the proposed method are better than those of the local linear approximation especially in case that the amount of noise is large.

  • Extracting Temporal Firing Patterns of Neurons from Noisy Data

    Toshihiro IWAMOTO  Yasuhiko JIMBO  Kazuyuki AIHARA  

     
    PAPER-Neural Networks and Bioengineering

      Vol:
    E85-A No:4
      Page(s):
    892-902

    We propose a novel method for analysis of time-related neuronal activities. This method can be used for the detection of firing patterns in the presence of noise, which is inevitable in physiological experiments. This method is also useful for probability density estimation, because it enables precise information quantification from a small amount of data.

  • A CMOS Spiking Neural Network Circuit with Symmetric/Asymmetric STDP Function

    Hideki TANAKA  Takashi MORIE  Kazuyuki AIHARA  

     
    PAPER-Neural Networks and Bioengineering

      Vol:
    E92-A No:7
      Page(s):
    1690-1698

    In this paper, we propose an analog CMOS circuit which achieves spiking neural networks with spike-timing dependent synaptic plasticity (STDP). In particular, we propose a STDP circuit with symmetric function for the first time, and also we demonstrate associative memory operation in a Hopfield-type feedback network with STDP learning. In our spiking neuron model, analog information expressing processing results is given by the relative timing of spike firing events. It is well known that a biological neuron changes its synaptic weights by STDP, which provides learning rules depending on relative timing between asynchronous spikes. Therefore, STDP can be used for spiking neural systems with learning function. The measurement results of fabricated chips using TSMC 0.25 µm CMOS process technology demonstrate that our spiking neuron circuit can construct feedback networks and update synaptic weights based on relative timing between asynchronous spikes by a symmetric or an asymmetric STDP circuits.

  • A Fuzzy-Like Phenomenon in Chaotic Autoassociative Memory

    Zhijie WANG  Kazuyuki AIHARA  

     
    PAPER-Neural Networks and Bioengineering

      Vol:
    E85-A No:3
      Page(s):
    714-722

    A fuzzy-like phenomenon is observed in a chaotic neural network operating as dynamic autoassociative memory. When an external stimulation with properties shared by two stored patterns is applied to the chaotic neural network, the output of the network transits between the two patterns. The ratio of the network visiting two stored patterns is dependent on the ratio of the Hamming distances between the external stimulation and the two stored patterns. This phenomenon is similar to the human decision-making process, which can be described by fuzzy set theory. Here, we analyze the fuzzy-like phenomenon from the viewpoint of the fuzzy set theory.

  • An Analysis on Lyapunov Spectrum of Electroencephalographic (EEG) Potentials

    Tohru IKEGUCHI  Kazuyuki AIHARA  Susumu ITOH  Toshio UTSUNOMIYA  

     
    PAPER-Chaos in Engineering Science

      Vol:
    E73-E No:6
      Page(s):
    842-847

    Electroencephalographic (EEG) potentials are analysed by the Lyapunov spectrum in order to evaluate the orbital instability peculiar to deterministic chaos quantitatively. First, the Lyapunov spectra are estimated to confirm the existence of chaotic behavior in EEG data by the optimal approximation of Jacobian matrix in the reconstructed statespace. Second, the same method is applied to a neural network model with chaotic dynamics, the macroscopic average activity of which is analysed as a simple model of EEG data. The first analysis shows that the largest Lyapunov exponent is actually positive in the EEG data. On the other hand, the second analysis on the chaotic neural network shows that the positive largest Lyapunov exponent can be obtained by observing only the macroscopic average activity. Thus, these results indicate the possibility that one can know the existence of chaotic dynamics in the brain by analysing the Lyapunov spectrum of the macroscopic EEG data.

  • Dynamical Neural Network Model for Hippocampal Memory

    Osamu ARAKI  Kazuyuki AIHARA  

     
    PAPER-Neural Networks

      Vol:
    E81-A No:9
      Page(s):
    1824-1832

    The hippocampus is thought to play an important role in the transformation from short-term memory into long-term memory, which is called consolidation. The physiological phenomenon of synaptic change called LTP or LTD has been studied as a basic mechanism for learning and memory. The neural network mechanism of the consolidation, however, is not clarified yet. The authors' approach is to construct information processing theory in learning and memory, which can explain the physiological data and behavioral data. This paper proposes a dynamical hippocampal model which can store and recall spatial input patterns. The authors assume that the primary functions of hippocampus are to store episodic information of sensory signals and to keep them for a while until the neocortex stores them as a long-term memory. On the basis of the hippocampal architecture and hypothetical synaptic dynamics of LTP/LTD, the authors construct a hippocampal model. This model considers: (1) divergent connections, (2) the synaptic dynamics of LTP and LTD based on pre- and postsynaptic coincidence, and (3) propagation of LTD. Computer simulations show that this model can store and recall its input spatial pattern by self-organizing closed activating pathways. By the backward propagation of LTD, the synaptic pathway for a specific spatial input pattern can be selected among the divergent closed connections. In addition, the output pattern also suggests that this model is sensitive to the temporal timing of input signals. This timing sensitivity suggests the applicability to spatio-temporal input patterns of this model. Future extensions of this model are also discussed.

1-20hit(30hit)