The search functionality is under construction.

Author Search Result

[Author] Leona OKAMURA(3hit)

1-3hit
  • A 6.72-Gb/s 8 pJ/bit/iteration IEEE 802.15.3c LDPC Decoder Chip

    Zhixiang CHEN  Xiao PENG  Xiongxin ZHAO  Leona OKAMURA  Dajiang ZHOU  Satoshi GOTO  

     
    PAPER-High-Level Synthesis and System-Level Design

      Vol:
    E94-A No:12
      Page(s):
    2587-2596

    In this paper, we introduce an LDPC decoder design for decoding a length-672 multi-rate code adopted in IEEE 802.15.3c standard. The proposed decoder features high performances in both data rate and power efficiency. A macro-layer level fully parallel layered decoding architecture is proposed to support the throughput requirement in the standard. For the proposed decoder, it takes only 4 clock cycles to process one decoding iteration. While parallelism increases, the chip routing congestion problem becomes more severe because a more complicated interconnection network is needed for message passing during the decoding process. This problem is nicely solved by our proposed efficient message permutation scheme utilizing exploited parity check matrix features. The proposed message permutation network features high compatibility and zero-logic-gate VLSI implementation, which contribute to the remarkable improvements in both area utilization ratio and total gate count. Meanwhile, frame-level pipeline decoding is applied in the design to shorten the critical path. To verify the above techniques, the proposed decoder is implemented on a chip fabricated using Fujitsu 65 nm 1P12L LVT CMOS process. The chip occupies a core area of 1.30 mm2 with area utilization ratio 86.3%. According to the measurement results, working at 1.2 V, 400 MHz and 10 iterations the proposed decoder delivers a 6.72 Gb/s data throughput and dissipates a power of 537.6 mW, resulting in an energy efficiency 8.0 pJ/bit/iteration. Moreover, a decoder of the same architecture but with no pipeline stage for low-profile application is also implemented and evaluated at post-layout level.

  • An Energy Efficiency 4-bit Multiplier with Two-Phase Non-overlap Clock Driven Charge Recovery Logic

    Yimeng ZHANG  Leona OKAMURA  Tsutomu YOSHIHARA  

     
    PAPER

      Vol:
    E94-C No:4
      Page(s):
    605-612

    A novel charge-recovery logic structure called Pulse Boost Logic (PBL) is proposed in this paper. PBL is a high-speed low-energy-dissipation charge-recovery logic with dual-rail evaluation tree structure. It is driven by 2-phase non-overlap clock, and requires no DC power supply. PBL belongs to boost logic family, which includes boost logic, enhanced boost logic and subthreshold boost logic. In this paper, PBL has been compared with other charge-recovery logic technologies. To demonstrate the performance of PBL structure, a 4-bit pipeline multiplier is designed and fabricated with 0.18 µm CMOS process technology. The simulation results indicate that the 4-bit multiplier can work at a frequency of 1.8 GHz, while the measurement of test chip is at operation frequency of 161 MHz, and the power dissipation at 161 MHz is 772 µW.

  • An Area Efficiency Hybrid Decoupling Scheme for Charge Pump Noise Suppression in Non-volatile Memory

    Mengshu HUANG  Leona OKAMURA  Tsutomu YOSHIHARA  

     
    PAPER

      Vol:
    E94-C No:6
      Page(s):
    968-976

    An area efficiency hybrid decoupling scheme is proposed to suppress the charge pump noise during F-N tunneling program in non-volatile memory (NVM). The proposed scheme is focused on suppressing the average noise power in frequency domain aspect, which is more suitable for the program error reduction in NVMs. The concept of active capacitor is utilized. Feed forward effect of the amplifier is firstly considered in the impedance analysis, and a trade-off relation between in-band and out-band frequency noise decoupling performance is shown. A fast optimization based on average noise power is made to achieve minimum error in the F-N tunneling program. Simulation results show very stable output voltage in different load conditions, the average ripple voltage is 17 mV with up to 20 dB noise-suppression-ratio (NSR), and the F-N tunneling program error is less than 5 mV for a 800 µs program pulse. A test chip is also fabricated in 0.18 µm technology. The area overhead of the proposed scheme is 2%. The measurement results show 24.4 mV average ripple voltage compared to 72.3 mV of the conventional one with the same decoupling capacitance size, while the noise power suppression achieves 15.4 dB.