Lili WEI Zhenglong YANG Zhenming WANG Guozhong WANG
Since HEVC intra rate control has no prior information to rely on for coding, it is a difficult work to obtain the optimal λ for every coding tree unit (CTU). In this paper, a convolutional neural network (CNN) based intra rate control is proposed. Firstly, a CNN with two last output channels is used to predict the key parameters of the CTU R-λ curve. For well training the CNN, a combining loss function is built and the balance factor γ is explored to achieve the minimum loss result. Secondly, the initial CTU λ can be calculated by the predicted results of the CNN and the allocated bit per pixel (bpp). According to the rate distortion optimization (RDO) of a frame, a spatial equation is derived between the CTU λ and the frame λ. Lastly, The CTU clipping function is used to obtain the optimal CTU λ for the intra rate control. The experimental results show that the proposed algorithm improves the intra rate control performance significantly with a good rate control accuracy.
In this letter, we first present a new construction method for uncorrelated binary periodic Complementary sequence sets (CSS). Next, the uncorrelated periodic CSSs are used as pilot sequences for multiple-input multiple-output (MIMO) channel estimation. Later on, we propose a low-complexity periodic correlator. Finally, simulation results verify the optimality of pilot sequences for MIMO channel estimation.
Wenhao JIANG Wenjiang FENG Xingcheng ZHAO Qing LUO Zhiming WANG
Spectrum sharing effectively improves the spectrum usage by allowing secondary users (SUs) to dynamically and opportunistically share the licensed bands with primary users (PUs). The concept of cooperative spectrum sharing allows SUs to use portions of the PUs' radio resource for their own data transmission, under the condition that SUs help the PUs' transmission. The key issue with designing such a scheme is how to deal with the resource splitting of the network. In this paper we propose a relay-based cooperative spectrum sharing scheme in which the network consists of one PU and multiple SUs. The PU asks the SUs to relay its data in order to improve its energy efficiency, in return it rewards the SUs with a portion of its authorized spectrum. However each SU is only allowed to transmit its data via the rewarded channel at a power level proportional to the contribution it makes to the PU. Since energy cost is considered, the SUs must carefully determine their power level. This scheme forms a non-cooperative Stackelberg resource allocation game where the strategy of PU is the bandwidth it rewards and the strategy of each SU is power level of relay transmission. We first investigate the second stage of the sub-game which is addressed as power allocation game. We prove there exists an equilibrium in the power allocation game and provide a sufficient condition for the uniqueness of the equilibrium. We further prove a unique Stackelberg equilibrium exists in the resource allocation game. Distributed algorithms are proposed to help the users with incomplete information achieve the equilibrium point. Simulation results validate our analysis and show that our proposed scheme introduces significant utility improvement for both PU and SUs.
Junhui ZHAO Dongming WANG Xiaohu YOU Yun Hee KIM
In CDMA system, the RAKE receiver is commonly used to attain diversity gain by taking advantage of the good correlation properties of the spreading codes. However, at low spreading gains the good correlation properties of the spreading codes are lost and the RAKE receiver performance is severely degraded by intersymbol interference (ISI) due to the interpath interference (IPI). In case of multi-code CDMA system, there are exist multi-code interference (MCI). In order to suppress ISI and MCI, a novel receiver based on soft-output viterbi algorithm (SOVA) equalization is proposed in this paper. The SOVA equalization is applied to symbol sequences after RAKE combining and MCI cancellation to effectively eliminate the ISI during transmission of high rate data in wideband DS-CDMA systems. Simulation results show that the proposed RAKE-SOVA receiver significantly outperform the traditional RAKE and RAKE-VA receivers.
Weile ZHANG Huiming WANG Qinye YIN Wenjie WANG
In this letter, we propose a simple distributed space-frequency code with both timing errors and multiple carrier frequency offsets (CFO) in asynchronous cooperative communications. By employing both the Alamouti coding approach and the transmit repetition diversity technique, full diversity gain can be achieved by the fast symbol-wise maximum likelihood (ML) decoding at the destination node. Analysis and simulations demonstrate the effectiveness of the proposed method.
Xiaoming WANG Xiaohong JIANG Tao YANG Qiaoliang LI Yingshu LI
Routing is still a challenging issue for wireless sensor networks (WSNs), in particular for WSNs with a non-uniform deployment of nodes. This paper introduces a Node Aggregation Degree-aware Random Routing (NADRR) algorithm for non-uniform WSNs with the help of two new concepts, namely the Local Vertical Aggregation Degree (LVAD) and Local Horizontal Aggregation Degree (LHAD). Our basic idea is to first apply the LVAD and LHAD to determine one size-proper forwarding region (rather than a fixed-size one as in uniform node deployment case) for each node participating in routing, then select the next hop node from the size-proper forwarding region in a probabilistic way, considering both the residual energy and distribution of nodes. In this way, a good adaptability to the non-uniform deployment of nodes can be guaranteed by the new routing algorithm. Extensive simulation results show that in comparison with other classical geographic position based routing algorithms, such as GPSR, TPGF and CR, the proposed NADRR algorithm can result in lower node energy consumption, better balance of node energy consumption, higher routing success rate and longer network lifetime.
Jingyu HUA Xiaohu YOU Dongming WANG
In [1], an algorithm based on phase variations of received pilot symbols was proposed to estimate one of the most important channel parameters, maximum Doppler shift, fd. However, AWGN (Additive white gauss noise) will cause large estimation error in some cases. In order to analyze the influence of noise, we extended the phase probability density function (pdf) in [1] to the scenario with both fading and AWGN, then the estimation error is characterized in closed-form expression. By this error expression, we found that power control will affect the estimator of [1] and we proposed a modification method based on SNR estimation to obtain accurate Doppler shift estimation in moderate low SNRs (signal-to-noise ratio). Simulation results show high accuracy in wide range of velocities and SNRs.
Zhanjun JIANG Jiang WU Dongming WANG Xiaohu YOU
A parallel multiplexing scheduling (PMS) scheme is proposed for distributed antenna systems (DAS), which greatly improves average system throughput due to multi-user diversity and multi-user multiplexing. However, PMS has poor fairness because of the use of the "best channel selection" criteria in the scheduler. Thus we present a parallel proportional fair scheduling (PPFS) scheme, which combines PMS with proportional fair scheduling (PFS) to achieve a tradeoff between average throughput and fairness. In PPFS, the "relative signal to noise ratio (SNR)" is employed as a metric to select the user instead of the "relative throughput" in the original PFS. And only partial channel state information (CSI) is fed back to the base station (BS) in PPFS. Moreover, there are multiple users selected to transmit simultaneously at each slot in PPFS, while only one user occupies all channel resources at each slot in PFS. Consequently, PPFS improves fairness performance of PMS greatly with a relatively small loss of average throughput compared to PFS.
Chung-Ming WANG Peng-Cheng WANG
Sampling is important for many applications in research areas such as graphics, vision, and image processing. In this paper, we present a novel stratified sampling algorithm (SSA) for the coiled tubing surface with a given probability density function. The algorithm is developed from the inverse function of the integration for the areas of the coiled tubing surface. We exploit a Hierarchical Allocation Strategy (HAS) to preserve sample stratification when generating any desirable sample numbers. This permits us to reduce variances when applying our algorithm to Monte Carlo Direct Lighting for realistic image generation. We accelerate the sampling process using a segmentation technique in the integration domain. Our algorithm thus runs 324 orders of magnitude faster when using faster SSA algorithm where the order of the magnitude is proportional to the sample numbers. Finally, we employ a parabolic interpolation technique to decrease the average errors occurred for using the segmentation technique. This permits us to produce nearly constant average errors, independent of the sample numbers. The proposed algorithm is novel, efficient in computing and feasible for realistic image generation using Monte Carlo method.
Shidang LI Chunguo LI Yongming HUANG Dongming WANG Luxi YANG
Considering worse-case channel uncertainties, we investigate the robust energy efficient (EE) beamforming design problem in a K-user multiple-input-single-output (MISO) interference channel. Our objective is to maximize the worse-case sum EE under individual transmit power constraints. In general, this fractional programming problem is NP-hard for the optimal solution. To obtain an insight into the problem, we first transform the original problem into its lower bound problem with max-min and fractional form by exploiting the relationship between the user rate and the minimum mean square error (MMSE) and using the min-max inequality. To make it tractable, we transform the problem of fractional form into a subtractive form by using the Dinkelbach transformation, and then propose an iterative algorithm using Lagrangian duality, which leads to the locally optimal solution. Simulation results demonstrate that our proposed robust EE beamforming scheme outperforms the conventional algorithm.
Jiamin LI Dongming WANG Pengcheng ZHU Lan TANG Xiaohu YOU
All points on the Pareto boundary can be obtained by solving the weighted sum rate maximization problem for some weighted coefficients. Unfortunately, the problem is non-convex and difficult to solve without performing an exhaustive search. In this paper, we propose an optimal distributed beamforming strategy for the two-user multiple-input single-output (MISO) interference channel (IC). Through minimizing the interference signal power leaked to the other receiver for fixed useful signal power received at the intended receiver, the original non-convex optimization problem can be converted into a family of convex optimization problems, each which can be solved in distributed manner with only local channel state information at each transmitter. After some conversion, we derive the closed-form solutions to all Pareto optimal points based on a game-theoretic viewpoint which indicates that linear combinations of the maximum-ratio transmit (MRT) and zero-forcing (ZF) beamforming strategies can achieve any point on the Pareto boundary of the rate region for the two-user MISO interference channel, and the only computation involved is to solve a basic quadratic equation. Finally, the result is validated via numerical simulations.
Wenhao JIANG Wenjiang FENG Shaoxiang GU Yuxiang LIU Zhiming WANG
In this paper, we study the power allocation problem in a relay assisted multi-band underlay cognitive radio network. Such a network allows unlicensed users (secondary users) to access the spectrum bands under a transmission power constraint. Due to the concave increasing property of logarithm function, it is not always wise for secondary users to expend all the transmission power in one band if their aim is to maximize achievable data rate. In particular, we study a scenario where two secondary users and a half-duplexing relay exist with two available bands. The two users choose different bands for direct data transmission and use the other band for relay transmission. By properly allocating the power on two bands, each user may be able to increase its total achievable data rate while satisfying the power constraint. We formulate the power allocation problem as a non-cooperative game and investigate its Nash equilibria. We prove the power allocation game is a supermodular game and that Nash equilibria exist. We further find the best response function of users and propose a best response update algorithm to solve the corresponding dynamic game. Numerical results show the overall performance in terms of achievable rates is improved through our proposed transmission scheme and power allocation algorithm. Our proposed algorithm also shows satisfactory performance in terms of convergence speed.
Wei HONG Shiwen HE Haiming WANG Guangqi YANG Yongming HUANG Jixing CHEN Jianyi ZHOU Xiaowei ZHU Nianzhu ZHANG Jianfeng ZHAI Luxi YANG Zhihao JIANG Chao YU
This paper presents an overview of the advance of the China millimeter-wave multiple gigabit (CMMG) wireless local area network (WLAN) system which operates in the 45 GHz frequency band. The CMMG WLAN system adopts the multiple antennas technologies to support data rate up to 15Gbps. During the progress of CMMG WLAN standardization, some new key technologies were introduced to adapt the millimeter-wave characteristic, including the usage of the zero correlation zone (ZCZ) sequence, a novel lower density parity check code (LDPC)-based packet encoding, and multiple input multiple output (MIMO) single carrier transmission. Extensive numerical results and system prototype test are also given to validate the performance of the technologies adopted by CMMG WLAN system.
Mie SATO Sarang LAKARE Ming WAN Arie KAUFMAN Zhengrong LIANG Mark WAX
The first important step in pre-processing data for 3D virtual colonoscopy requires careful segmentation of a complicated shaped colon. We describe an automatic colon segmentation method with a new patient-friendly bowel preparation scheme. This new bowel preparation makes the segmentation more appropriate for digitally removing undesirable remains in the colon. With the aim of segmenting the colon accurately, we propose two techniques which can solve the partial-volume-effect (PVE) problem on the boundaries between low and high intensity regions. Based on the features of the adverse PVE voxels on the gas and fluid boundary inside the colon, our vertical filter eliminates these PVE voxels. By seriously considering the PVE on the colon boundary, our gradient-magnitude-based region growing algorithm improves the accuracy of the boundary. The result of the automatic colon segmentation method is illustrated with both extracted 2D images from the experimental volumetric abdominal CT datasets and a reconstructed 3D colon model.
Bowei ZHANG Wenjiang FENG Le LI Guoling LIU Zhiming WANG
In this paper, we investigate the degrees of freedom (DoF) of a MIMO cellular interfering network (CIN) with L (L≥3) cells and K users per cell. Previous works established the DoF upper bound of LK(M+N)/(LK+1) for the MIMO CIN by analyzing the interference alignment (IA) feasibility, where M and N denote the number of antennas at each base station (BS) and each user, respectively. However, there is still a gap between the DoF upper bound and the achievable DoF in existing designs. To address this problem, we propose two linear IA schemes without symbol extensions to jointly design transmit and receive beamforming matrices to align and eliminate interference. In the two schemes, the transmit beamforming vectors are allocated to different cluster structures so that the inter-cell interference (ICI) data streams from different ICI channels are aligned. The first scheme, named fixed cluster structure (FCS-IA) scheme, allocates ICI beamforming vectors to the cluster structures of fixed dimension and can achieve the DoF upper bound under some system configurations. The second scheme, named dynamic cluster structure IA (DCS-IA) scheme, allocates ICI beamforming vectors to the cluster structures of dynamic dimension and can get a tradeoff between the number of antennas at BSs and users so that ICI alignment can be applied under various system configurations. Through theoretical analysis and numerical simulations, we verify that the DoF upper bound can be achieved by using the FCS-IA scheme. Furthermore, we show that the proposed schemes can provide significant performance gain over the time division multiple access (TDMA) scheme in terms of DoF. From the perspective of DoF, it is shown that the proposed schemes are more effective than the conventional IA schemes for the MIMO CIN.
Jiamin LI Dongming WANG Pengcheng ZHU Lan TANG Xiaohu YOU
In this paper, a distributed cooperative multicell beamforming algorithm is proposed, and a detail analysis and solving method for instantaneous and statistical channel state information (CSI) are presented. Firstly, an improved distributed iterative beamforming algorithm is proposed for the multiple-input single-output interference channel (MISO IC) scenario which chooses virtual signal-to-interference-and-noise (SINR) as decision criterion to initialize and then iteratively solves the constrained optimization problem of maximizing the virtual SINR for a given level of generated interference to other users. Then, the algorithm is generalized to the multicell date sharing scenario with a heuristics power allocation scheme based on a viewpoint of the layered channel. Finally, the performance is illustrated through numerical simulations.
Haiming WANG Xiqi GAO Bin JIANG Xiaohu YOU Wei HONG
In this letter, an improved channel estimator for MIMO-SCBT systems is proposed. Pilot blocks are constructed using quadriphase complementary sequences (QCSs) which enable both one-sided (OSD) and two-sided (TSD) channel estimation (CE). And OSD-CE and TSD-CE are combined to provide improved performance in frequency-selective fast and slow fading channels and to maintain low-complexity implementations. Simulation results demonstrate the performance merits of the proposed scheme.
Yaming WANG Jiansheng CHEN Guangda SU
In this paper, we design a new color space YUskin Vskin from YUV color space, based on the principle of skin color with respect to the change of color temperature. Compared with previous work, this color space proved to be the optimal color space for hand segmentation with linear thresholds. We also propose a novel fingertip detection method based on the concomitance between finger and fingernail. The two techniques together improve the performance of hand contour and fingertip extraction in hand gesture recognition.
Dongming WANG Heping GU Hao WEI Xiaoxia DUAN Chunguo LI Xiaohu YOU
In this paper, we study the spectral efficiency of the uplink multi-user large-scale distributed antenna systems (DAS) with imperfect channel state information. We propose the system model of multi-user DAS and illustrate the necessity of pilot reuse. Then, we derive the sum-rate of the system under pilot contamination. Furthermore, we investigate the asymptotical performance when the number of antennas goes to infinity. To reduce the pilot contamination, we present two novel pilot assignment algorithms to improve the spectral efficiency. Finally, we evaluate our proposed strategies through extensive simulations which show that compared with random pilot reuse, the min-max algorithm shows impressive performance with low complexity.
Dongming WANG Xiqi GAO Xiaohu YOU
A polynomial expansion linear detector (PELD) based turbo receiver is proposed for single-carrier zero-padding block transmission (ZP-SCBT) systems over the single-input single-output (SISO) and multiple-input multiple-output (MIMO) frequency selective channels. The performance is compared with the minimum mean square error (MMSE) and match filter (MF) based turbo receivers. It is shown that the PELD-based turbo receiver provides a good trade-off between performance and complexity compared with the other two alternatives.