The search functionality is under construction.

Author Search Result

[Author] Ming-Yu LI(2hit)

1-2hit
  • Analog Circuit Synthesis with Constraint Generation of Layout-Dependent Effects by Geometric Programming

    Yu ZHANG  Gong CHEN  Bo YANG  Jing LI  Qing DONG  Ming-Yu LI  Shigetoshi NAKATAKE  

     
    PAPER-Physical Level Design

      Vol:
    E96-A No:12
      Page(s):
    2487-2498

    As CMOS devices scaling down in nowadays integrated circuits, the impact of layout-dependent effects (LDEs) to circuit performances becomes to be significant. This paper mainly focuses on LDE-aware analog circuit synthesis. Our circuit synthesis follows an optimization framework of transistor sizing based on geometric programming (GP) in which analog circuit performances are formulated in terms of monomials and posynomials. Providing GP models for the LDEs such as the shallow trench isolation (STI) stress and the well proximity effect (WPE), we can generate layout constraints related to LDEs during the circuit synthesis. Applying our circuit synthesis to a typical two-stage op-amp, we showed that the resultant circuit, which generated by GP with circuit performance and layout constraints, satisfied all the specifications with the verification of HSPICE simulation based on the BSIM model with LDE options.

  • Layout Dependent Effect-Aware Leakage Current Reduction and Its Application to Low-Power SAR-ADC

    Gong CHEN  Yu ZHANG  Qing DONG  Ming-Yu LI  Shigetoshi NAKATAKE  

     
    PAPER

      Vol:
    E98-A No:7
      Page(s):
    1442-1454

    As semiconductor manufacturing processing scaling down, leakage current of CMOS circuits is becoming a dominant contributor to power dissipation. This paper provides an efficient leakage current reduction (LCR) technique for low-power and low-frequency circuit designs in terms of design rules and layout parameters related to layout dependent effects. We address the LCR technique both for analog and digital circuits, and present a design case when applying the LCR techniqe to a successive-approximation-register (SAR) analog-to-digital converter (ADC), which typically employs analog and digital transistors. In the post-layout simulation results by HSPICE, an SAR-ADC with the LCR technique achieves 38.6-nW as the total power consumption. Comparing with the design without the LCR technique, we attain about 30% total energy reduction.