The search functionality is under construction.

Author Search Result

[Author] Naoaki TAKEBE(2hit)

1-2hit
  • Fabrication of InP/InGaAs DHBTs with Buried SiO2 Wires

    Naoaki TAKEBE  Takashi KOBAYASHI  Hiroyuki SUZUKI  Yasuyuki MIYAMOTO  Kazuhito FURUYA  

     
    PAPER

      Vol:
    E94-C No:5
      Page(s):
    830-834

    In this paper, we report the fabrication and device characteristics of InP/InGaAs double heterojunction bipolar transistors (DHBTs) with buried SiO2 wires. The SiO2 wires were buried in the collector and subcollector layers by metalorganic chemical vapor deposition toward reduction of the base-collector capacitance under the base electrode. A current gain of 22 was obtained at an emitter current density of 1.25 MA/cm2 for a DHBT with an emitter width of 400 nm. The DC characteristics of DHBTs with buried SiO2 wires were the same as those of DHBTs without buried SiO2 wires on the same substrate. A current gain cutoff frequency (fT) of 213 GHz and a maximum oscillation frequency (fmax) of 100 GHz were obtained at an emitter current density of 725 kA/cm2.

  • Reduction of Base-Collector Capacitance in InP/InGaAs DHBT with Buried SiO2 Wires

    Naoaki TAKEBE  Yasuyuki MIYAMOTO  

     
    BRIEF PAPER

      Vol:
    E95-C No:5
      Page(s):
    917-920

    In this paper, we report the reduction in the base-collector capacitance (CBC) of InP/InGaAs double heterojunction bipolar transistors with buried SiO2 wires (BG-HBT). In a previous trial, we could not confirm a clear difference between the CBC of the conventional HBT and that of the BG-HBT because the subcollector layer was thicker than expected. In this study, the interface between the collector and the subcollector was shifted to the middle of the SiO2 wires by adjusting the growth temperature, and a reduction in CBC with buried SiO2 wires was confirmed. The estimated CBC of the BG-HBT was 7.6 fF, while that of the conventional HBT was 8.6 fF. This 12% reduction was in agreement with the 10% reduction calculated according to the designed size.