The search functionality is under construction.

Author Search Result

[Author] Nguyen Ngoc BINH(5hit)

1-5hit
  • A New Approach to Embedded Software Optimization Based on Reverse Engineering

    Nguyen Ngoc BINH  Pham Van HUONG  Bui Ngoc HAI  

     
    PAPER-Computer System

      Pubricized:
    2015/03/17
      Vol:
    E98-D No:6
      Page(s):
    1166-1175

    Optimizing embedded software is a problem having scientific and practical signification. Optimizing embedded software can be done in different phases of the software life cycle under different optimal conditions. Most studies of embedded software optimization are done in forward engineering and these studies have not given an overall model for the optimization problem of embedded software in both forward engineering and reverse engineering. Therefore, in this paper, we propose a new approach to embedded software optimization based on reverse engineering. First, we construct an overall model for the embedded software optimization in both forward engineering and reverse engineering and present a process of embedded software optimization in reverse engineering. The main idea of this approach is that decompiling executable code to source code, converting the source code to models and optimizing embedded software under different levels such as source code and model. Then, the optimal source code is recompiled. To develop this approach, we present two optimization techniques such as optimizing power consumption of assembly programs based on instruction schedule and optimizing performance based on alternating equivalent expressions.

  • An Optimization Algorithm for High Performance ASIP Design with Considering the RAM and ROM Sizes

    Nguyen Ngoc BINH  Masaharu IMAI  Yoshinori TAKEUCHI  

     
    PAPER-Co-design

      Vol:
    E81-A No:12
      Page(s):
    2612-2620

    In designing ASIPs (Application Specific Integrated Processors), the papers investigated so far have almost focused on the optimization of the CPU core and did not pay enough attention to the optimization of the RAM and ROM sizes together. This paper overcomes this limitation and proposes an optimization algorithm to define the best ratio between the CPU core, RAM and ROM of an ASIP chip to achieve the highest performance while satisfying design constraints on the chip area. The partitioning problem is formalized as a combinatorial optimization problem that partitions the operations into hardware and software so that the performance of the designed ASIP is maximized under given chip area constraint, where the chip area includes the HW cost of the register file for a given application program with associated input data set. The optimization problem is parameterized so that it can be applied with different technologies to synthesize CPU cores, RAMs or ROMs. The experimental results show that the proposed algorithm is found to be effective and efficient.

  • Optimal Instruction Set Design through Adaptive Detabase Generation

    Nguyen Ngoc BINH  Masaharu IMAI  Akichika SHIOMI  Nobuyuki HIKICHI  

     
    PAPER

      Vol:
    E79-A No:3
      Page(s):
    347-353

    This paper proposes a new method to design an optimal pipelined instructions set processor for ASIP development using a formal HW/SW codesign methodology. First, a HW/SW partioning algorithm for selecting an optimal pipelined architecture is outlined. Then, an adaptive detabase approach is presented that enables to enhance the optimality of the design through very accurate estimation of the performance of a pipelined ASIP in the HW/SW partitioning process. The experimental results show that the proposed method is effective and efficient.

  • An Efficient Scheduling Algorithm for Pipelined Instruction Set Processor and Its Application to ASIP Hardware/Software Codesign

    Nguyen Ngoc BINH  Masaharu IMAI  Akichika SHIOMI  Nobuyuki HIKICHI  Yoshimichi HONMA  Jun SATO  

     
    PAPER-VLSI Design Technology and CAD

      Vol:
    E78-A No:3
      Page(s):
    353-362

    In this paper we describe the formal conditions to detect and resolve all kinds of pipeline data hazards and propose a scheduling algorithm for pipelined instruction set processor synthesis. The algorithm deals with multi cycle operations and tries to minimize the pipeline execution cycles under a given hardware configuration with/without hardware interlock. The main feature that makes the proposed algorithm different from existing ones is the algorithm is for estimating the performance in HW/SW partitioning, with capability of handling a module library of different FUs and dealing with multi cycle operations to be implemented in software. Experimental results of application to ASIP HW/SW codesign show that the proposed algorithm is effective and considerable pipeline execution cycle reduction rates can be achieved. The time complexity of the scheduing algorithm is of O(n2) in the worst case, where n is the number of instructions in a given basic block.

  • An Instruction Set Optimization Algorithm for Pipelined ASIPs

    Nguyen Ngoc BINH  Masaharu IMAI  Akichika SHIOMI  Nobuyuki HIKICHI  

     
    PAPER

      Vol:
    E78-A No:12
      Page(s):
    1707-1714

    This paper proposes a new method to design an optimal pipelined instruction set processor using formal HW/SW codesign methodology. A HW/SW partitioning algorithm for selecting an optimal pipelined architecture is introduced. The codesign task addressed in this paper is to find a set of hardware implemented operations to achieve the highest performance of an ASIP with pipelined architecture under given gate count and power consumption constraints. The problem formalization as well as the proposed algorithm can be considered as an extension of our previous work toward a pipelined architecture. The experimental results show that the proposed method is quite effective and efficient.