Lei ZHANG Qingfu FAN Guoxing ZHANG Zhizheng LIANG
Existing trajectory prediction methods suffer from the “data sparsity” and neglect “time awareness”, which leads to low accuracy. Aiming to the problem, we propose a fast time-aware sparse trajectories prediction with tensor factorization method (TSTP-TF). Firstly, we do trajectory synthesis based on trajectory entropy and put synthesized trajectories into the original trajectory space. It resolves the sparse problem of trajectory data and makes the new trajectory space more reliable. Then, we introduce multidimensional tensor modeling into Markov model to add the time dimension. Tensor factorization is adopted to infer the missing regions transition probabilities to further solve the problem of data sparsity. Due to the scale of the tensor, we design a divide and conquer tensor factorization model to reduce memory consumption and speed up decomposition. Experiments with real dataset show that TSTP-TF improves prediction accuracy generally by as much as 9% and 2% compared to the Baseline algorithm and ESTP-MF algorithm, respectively.
Hainan ZHANG Yanjing SUN Song LI Wenjuan SHI Chenglong FENG
The correlation filter-based trackers with an appearance model established by single feature have poor robustness to challenging video environment which includes factors such as occlusion, fast motion and out-of-view. In this paper, a long-term tracking algorithm based on multi-feature adaptive fusion for video target is presented. We design a robust appearance model by fusing powerful features including histogram of gradient, local binary pattern and color-naming at response map level to conquer the interference in the video. In addition, a random fern classifier is trained as re-detector to detect target when tracking failure occurs, so that long-term tracking is implemented. We evaluate our algorithm on large-scale benchmark datasets and the results show that the proposed algorithm have more accurate and more robust performance in complex video environment.
Rongcun WANG Shujuan JIANG Kun ZHANG Qiao YU
Software fault localization, as one of the essential activities in program debugging, aids to software developers to identify the locations of faults in a program, thus reducing the cost of program debugging. Spectrum-based fault localization (SBFL), as one of the representative localization techniques, has been intensively studied. The localization technique calculates the probability of each program entity that is faulty by a certain suspiciousness formula. The accuracy of SBFL is not always as satisfactory as expected because it neglects the contextual information of statement executions. Therefore, we proposed 5 rules, i.e., random, the maximum coverage, the minimum coverage, the maximum distance, and the minimum distance, to improve the accuracy of SBFL for further. The 5 rules can effectively use the contextual information of statement executions. Moreover, they can be implemented on the traditional SBFL techniques using suspiciousness formulas with little effort. We empirically evaluated the impacts of the rules on 17 suspiciousness formulas. The results show that all 5 rules can significantly improve the ranking of faulty statements. Particularly, for the faults difficult to locate, the improvement is more remarkable. Generally, the rules can effectively reduce the number of statements examined by an average of more than 19%. Compared with other rules, the minimum coverage rule generates better results. This indicates that the application of the test case having the minimum coverage capability for fault localization is more effective.
A pre-trained deep convolutional neural network (DCNN) is adopted as a feature extractor to extract the feature representation of vein images for hand-dorsa vein recognition. In specific, a novel selective deep convolutional feature is proposed to obtain more representative and discriminative feature representation. Extensive experiments on the lab-made database obtain the state-of-the-art recognition result, which demonstrates the effectiveness of the proposed model.
Leida LI Hancheng ZHU Gaobo YANG
This letter presents a new image quality metric using low order discrete orthogonal moments. The moment features are extracted in a block manner and the relative moment differences (RMD) are computed. A new exponential function based on RMD is proposed to generate the quality score. The performance of the proposed method is evaluated on public databases. Experimental results and comparisons demonstrate the efficiency of the proposed method.
Most of the existing algorithms cannot effectively solve the data sparse problem of trajectory prediction. This paper proposes a novel sparse trajectory prediction method based on L-Z entropy estimation. Firstly, the moving region of trajectories is divided into a two-dimensional plane grid graph, and then the original trajectories are mapped to the grid graph so that each trajectory can be represented as a grid sequence. Secondly, an L-Z entropy estimator is used to calculate the entropy value of each grid sequence, and then the trajectory which has a comparatively low entropy value is segmented into several sub-trajectories. The new trajectory space is synthesised by these sub-trajectories based on trajectory entropy. The trajectory synthesis can not only resolve the sparse problem of trajectory data, but also make the new trajectory space more credible. In addition, the trajectory scale is limited in a certain range. Finally, under the new trajectory space, Markov model and Bayesian Inference is applied to trajectory prediction with data sparsity. The experiments based on the taxi trajectory dataset of Microsoft Research Asia show the proposed method can make an effective prediction for the sparse trajectory. Compared with the existing methods, our method needs a smaller trajectory space and provides much wider predicting range, faster predicting speed and better predicting accuracy.
Zhixiao WANG Mengnan HOU Guan YUAN Jing HE Jingjing CUI Mingjun ZHU
Social networks often demonstrate hierarchical community structure with communities embedded in other ones. Most existing hierarchical community detection methods need one or more tunable parameters to control the resolution levels, and the obtained dendrograms, a tree describing the hierarchical community structure, are extremely complex to understand and analyze. In the paper, we propose a parameter-free hierarchical community detection method based on micro-community and minimum spanning tree. The proposed method first identifies micro-communities based on link strength between adjacent vertices, and then, it constructs minimum spanning tree by successively linking these micro-communities one by one. The hierarchical community structure of social networks can be intuitively revealed from the merging order of these micro-communities. Experimental results on synthetic and real-world networks show that our proposed method exhibits good accuracy and efficiency performance and outperforms other state-of-the-art methods. In addition, our proposed method does not require any pre-defined parameters, and the output dendrogram is simple and meaningful for understanding and analyzing the hierarchical community structure of social networks.
Hand-dorsa vein recognition is solved based on the convolutional activations of the pre-trained deep convolutional neural network (DCNN). In specific, a novel task-specific cross-convolutional-layer pooling is proposed to obtain the more representative and discriminative feature representation. Rigorous experiments on the self-established database achieves the state-of-the-art recognition result, which demonstrates the effectiveness of the proposed model.
Fuqiang LI Tongzhuang ZHANG Yong LIU Guoqing WANG
The ignored side effect reflecting in the introduction of mismatching brought by contrast enhancement in representative SIFT based vein recognition model is investigated. To take advantage of contrast enhancement in increasing keypoints generation, hierarchical keypoints selection and mismatching removal strategy is designed to obtain state-of-the-art recognition result.
Qiao YU Shujuan JIANG Yanmei ZHANG
Class imbalance has drawn much attention of researchers in software defect prediction. In practice, the performance of defect prediction models may be affected by the class imbalance problem. In this paper, we present an approach to evaluating the performance stability of defect prediction models on imbalanced datasets. First, random sampling is applied to convert the original imbalanced dataset into a set of new datasets with different levels of imbalance ratio. Second, typical prediction models are selected to make predictions on these new constructed datasets, and Coefficient of Variation (C·V) is used to evaluate the performance stability of different models. Finally, an empirical study is designed to evaluate the performance stability of six prediction models, which are widely used in software defect prediction. The results show that the performance of C4.5 is unstable on imbalanced datasets, and the performance of Naive Bayes and Random Forest are more stable than other models.
Leida LI Yu ZHOU Jinjian WU Jiansheng QIAN Beijing CHEN
Image retouching is fundamental in photography, which is widely used to improve the perceptual quality of a low-quality image. Traditional image quality metrics are designed for degraded images, so they are limited in evaluating the quality of retouched images. This letter presents a RETouched Image QUality Evaluation (RETIQUE) algorithm by measuring structure and color changes between the original and retouched images. Structure changes are measured by gradient similarity. Color colorfulness and saturation are utilized to measure color changes. The overall quality score of a retouched image is computed as the linear combination of gradient similarity and color similarity. The performance of RETIQUE is evaluated on a public Digitally Retouched Image Quality (DRIQ) database. Experimental results demonstrate that the proposed metric outperforms the state-of-the-arts.