1-2hit |
Hitoshi MUGURUMA Satoshi MIURA Naoya MURATA
Adsorption of antibody protein (anti-human IgG) onto plasma-polymerized thin films (PPF) with nanoscale thickness was characterized by atomic force microscopy (AFM) and quartz crystal microbalance (QCM). The PPF surface is very flat (less than 1 nm roughness) and its properties (charge and wettability) can be easily changed while retaining the backbone structure. We focus on two types of surfaces: one is the pristine surface of hexamethyldisiloxane (HMDS) PPF (hydrophobic) and the other is an HMDS PPF surface with nitrogen-plasma treatment (hydrophilic and positive-charged surface). The AFM image showed that the antibody molecules were densely adsorbed onto both surfaces and individual antibody molecules could be observed. The QCM profiles show a corresponding tendency with the AFM images. These results indicate that the plasma polymerized film can be the suitable biointerface for the application of biosensor and bioassay.
Tetsuya IIZUKA Satoshi MIURA Ryota YAMAMOTO Yutaka CHIBA Shunichi KUBO Kunihiro ASADA
This paper proposes a sub-ps resolution TDC utilizing a differential pulse-shrinking buffer ring. This scheme uses two differentially-operated pulse-shrinking inverters and the TDC resolution is finely controlled by the transistor size ratio between them. The proposed TDC realizes 9 bit, 580 fs resolution in a 0.18 µm CMOS technology with 0.04 mm2 area, and achieves DNL and INL of +0.8/-0.8LSB and +4.3/-4.0LSB, respectively, without linearity calibration. A power dissipation at 1.5 MS/s ranges from 10.8 to 12.6 mW depending on the input time intervals.