The search functionality is under construction.

Author Search Result

[Author] Seigo TAKAHASHI(5hit)

1-5hit
  • High Speed Quantum Key Distribution System

    Akio TAJIMA  Akihiro TANAKA  Seigo TAKAHASHI  Ken-ichiro YOSHINO  Yoshihiro NAMBU  

     
    INVITED PAPER

      Vol:
    E93-A No:5
      Page(s):
    889-896

    Quantum key distribution (QKD) systems can generate unconditionally secure common keys between remote users. Improvements of QKD performance, particularly in key generation rate, have been required to meet current network traffic. A high-speed QKD system should be equipped with low-loss receivers with high visibility, highly efficient photon detectors with small dark count probability. A solution to these issues is to employ planar lightwave circuit (PLC) interferometers, single photon detection circuits and modules, together with multi-wavelength channels transmission using wavelength division multiplexing (WDM) technique.

  • Photonic Core Node Based on a 2.56-Terabit/s Opto-Electronic Switching Fabric

    Soichiro ARAKI  Naoya HENMI  Yoshiharu MAENO  Kazuhiko MATSUDA  Osamu NAKAKUBO  Masayuki SHINOHARA  Yoshihiko SUEMURA  Akio TAJIMA  Hiroaki TAKAHASHI  Seigo TAKAHASHI  Hiromi KOGANEMARU  Ken-ichi SAISHO  

     
    INVITED PAPER-Communication Networks

      Vol:
    E84-C No:5
      Page(s):
    485-492

    This paper proposes Photonic Core Node based on a 2.56-Terabit/s opto-electronic switching fabric, which can economically handle the rapidly increasing multimedia traffics, such as Internet traffic. We have successfully developed the first prototype of Photonic Core Node. The prototype consists of a single-stage full-crossbar opto-electronic switching fabric, super-packet buffers for input queuing, and a desynchronized-round-robin scheduler. The switching fabric is upgradable up to 2.56 Tb/s, and employs wavelength-division-multiplexing techniques, which dramatically reduce the total number of optical switching elements down to one-eighth the number of those used in a conventional switching fabric. The super-packet buffer assembles 16 ATM cells routed to the same output port into a single fixed-length packet. The super-packet-switching scheme drastically reduces the overhead of optical switching from 32 to 2.9%, although it tends to decrease effective throughput. The desynchronized-round-robin scheduler maintains nearly 100% effective throughput for random traffic, recursively resolving the contention of connection requests in one scheduling routine while keeping fairness in a round robin manner. The proposed Photonic Core Node can accommodate not only ATM switching but also WDM optical path grooming/multiplexing, and IP routing by using IP input buffer interfaces, because optical switches are bit-rate/format-independent.

  • Photonic Core Node Based on a 2.56-Terabit/s Opto-Electronic Switching Fabric

    Soichiro ARAKI  Naoya HENMI  Yoshiharu MAENO  Kazuhiko MATSUDA  Osamu NAKAKUBO  Masayuki SHINOHARA  Yoshihiko SUEMURA  Akio TAJIMA  Hiroaki TAKAHASHI  Seigo TAKAHASHI  Hiromi KOGANEMARU  Ken-ichi SAISHO  

     
    INVITED PAPER-Communication Networks

      Vol:
    E84-B No:5
      Page(s):
    1111-1118

    This paper proposes Photonic Core Node based on a 2.56-Terabit/s opto-electronic switching fabric, which can economically handle the rapidly increasing multimedia traffics, such as Internet traffic. We have successfully developed the first prototype of Photonic Core Node. The prototype consists of a single-stage full-crossbar opto-electronic switching fabric, super-packet buffers for input queuing, and a desynchronized-round-robin scheduler. The switching fabric is upgradable up to 2.56 Tb/s, and employs wavelength-division-multiplexing techniques, which dramatically reduce the total number of optical switching elements down to one-eighth the number of those used in a conventional switching fabric. The super-packet buffer assembles 16 ATM cells routed to the same output port into a single fixed-length packet. The super-packet-switching scheme drastically reduces the overhead of optical switching from 32 to 2.9%, although it tends to decrease effective throughput. The desynchronized-round-robin scheduler maintains nearly 100% effective throughput for random traffic, recursively resolving the contention of connection requests in one scheduling routine while keeping fairness in a round robin manner. The proposed Photonic Core Node can accommodate not only ATM switching but also WDM optical path grooming/multiplexing, and IP routing by using IP input buffer interfaces, because optical switches are bit-rate/format-independent.

  • Demand Assign Wavelength Division Multiple Access (DA-WDMA) Hybrid Optical Local Area Network Using Optical Add-Drop Multiplexers

    Takahiro SHIOZAWA  Seigo TAKAHASHI  Masahiro EDA  Akifumi Paulo YAZAKI  Masahiko FUJIWARA  

     
    PAPER

      Vol:
    E77-B No:2
      Page(s):
    184-189

    A new kind of optical local area network (LAN), using a demand assign wavelength division multiple access (DA-WDMA) scheme, has been proposed. The proposed LAN consists of two parts; an ordinary standardized LAN and an overlaid network using wavelength division (WD) channels. The proposed network can provide bit-rate independent communication channels on the ordinary LAN without limiting the capacities for the other channels. It also exhibits upgrade possibilities from present standardized networks. An access controller, which consists of software in addition to the ordinary LAN controller, a digital signal processor (DSP) etc., was developed for DA-WDMA control. The network node operation has been demonstrated using guided-wave acousto-optic (AO) mode converters as a tunable wavelength add-drop multiplexer (ADM).

  • Next Generation Optical Access Network: Standardization Outline and Key Technologies for Co-existence with Legacy Systems Open Access

    Akio TAJIMA  Hiroki YANAGISAWA  Seigo TAKAHASHI  

     
    INVITED PAPER

      Vol:
    E93-C No:7
      Page(s):
    1146-1151

    This paper reviews next generation optical access network standardization activities, focusing on 10-Gbps class TDM PON, and introduces key technologies for their co-existence with deployed systems.