1-4hit |
Takeo YAMASHITA Satoshi HASAKA Iwao NATORI Tadahiro OHMI
The two most important parameters in reactive ion etching process, ion bombardment energy and flux, were extracted through a simple RF waveform measurement at the excitation electrode in a conventional cathode-coupled plasma RIE system. By using the extracted plasma parameters, damage and contamination in Si substrates induced by reactive ion etching in a SiCl4 plasma were investigated. A very convenient map representation of ion energy and ion flux was introduced in understanding the etching process occurring in the RIE system.
An accurate, fast delay calculation method suitable for high-performance, low-power LSI design is proposed. The delay calculation is composed of two steps: (1) the gate delay is calculated by using an effective capacitance obtained from a simple model we propose; and (2) the interconnect delay is also calculated from the effective capacitance and modified by using the gate-output transition time. The proposed delay calculation halves the error of a conventional rough calculation, achieving a computational error within 10% per gate stage. The mathematical models are simple enough that the method is suitable for quick delay calculation and logic circuit optimization in the early stages of LSI design. A delay optimization tool using this delay calculation method reduced the worst path delay of a multiply-add module by 11.2% and decreased the sizes of 58.1% of the gates.
The concentration of the electric field at the edge of the electrode has been simulated in several types of flat DRAM cell capacitors with high permittivity dielectrics. The results indicated that the permittivity of the material surrounding the edge of the electrode as well as the geometrical structure affected the concentration of the electric field. The electric field strength was minimized and most evenly distributed by utilizing the structure in which the sidewall of the capacitor dielectric was terminated at the edge of the electrode by a low-dielectric constant insulator. High-precision fabrication of the capacitor's profile is required for the minimization and uniformity of the electric field.
Naoki KATO Yohei AKITA Mitsuru HIRAKI Takeo YAMASHITA Teruhisa SHIMIZU Fuyuhiko MAKI Kazuo YANO
Random modulation refers to the changing of the MOSFET threshold voltage cell by cell. This paper claims it is essential in sub-2-V CMOS design because it reduces the sub-threshold leakage current even in the active and sleep modes as well as in the stand-by mode. We found that a gradated modulation scheme, which gradually changes the ratio of low- Vth cells according to the path-delay, is the best approach. To achieve the minimal leakage current, the way of determining the optimum pair of threshold voltages is also described. Experimental results for microprocessor show that gradated modulation reduces sub-threshold leakage current by 75% to 90% compared to conventional single-low-threshold voltage design without degrading the performance of the circuits.