The search functionality is under construction.

Author Search Result

[Author] Toshihiro MINAMI(3hit)

1-3hit
  • Three-Layer Cooperative Architecture for MPEG-2 Video Encoder LSI

    Mitsuo IKEDA  Toshio KONDO  Koyo NITTA  Kazuhito SUGURI  Takeshi YOSHITOME  Toshihiro MINAMI  Jiro NAGANUMA  Takeshi OGURA  

     
    PAPER

      Vol:
    E83-C No:2
      Page(s):
    170-178

    This paper presents an architecture for a single-chip MPEG-2 video encoder and demonstrates its flexibility and usefulness. The architecture based on three-layer cooperation provides flexible data-transfer that improves the encoder from the standpoints of versatility, scalability, and video quality. The LSI was successfully fabricated in the 0.25-µm four-metal CMOS process. Its small size and its low power consumption make it ideal for a wide range of applications, such as DVD recorders, PC-card encoders and HDTV encoders.

  • An Overview of Video Coding VLSIs

    Ryota KASAI  Toshihiro MINAMI  

     
    INVITED PAPER-Processors

      Vol:
    E77-C No:12
      Page(s):
    1920-1929

    There are two approaches to implementing the international standard video coding algorithms such as H.261 and MPEG: a programmable DSP approach and a building block approach. The advantages and disadvantages of each are discussed here in detail, and the video coding algorithms and required throughput are also summarized. For more complex standard such as MPEG-, VLSI architecuture became more sophisticated. The DSP approach incorporates special processing engines and the building block approach integrates general-purpose microprocessors. Both approaches are capable of MPEG- NTSC coding in a single chip. Reduction of power consumption is a key issue for video LSIs. Architectures and circuits that reduce the supply voltage while maintaining throughput are summarized. A 0.25-µm, 3-GOPS, 0.5-W, SIMD-VSP for portable MPEG- systems could be made by using architecture-driven voltage scaling as well as feature-size scaling and SOI devices.

  • Motion Estimation and Compensation Hardware Architecture for a Scene-Adaptive Algorithm on a Single-Chip MPEG-2 Video Encoder

    Koyo NITTA  Toshihiro MINAMI  Toshio KONDO  Takeshi OGURA  

     
    PAPER-VLSI Systems

      Vol:
    E84-D No:3
      Page(s):
    317-325

    This paper describes a unique motion estimation and compensation (ME/MC) hardware architecture for a scene-adaptive algorithm. By statistically analyzing the characteristics of the scene being encoded and controlling the encoding parameters according to the scene, the quality of the decoded image can be enhanced. The most significant feature of the architecture is that the two modules for ME/MC can work independently. Since a time interval can be inserted between the operations of the two modules, a scene-adaptive algorithm can be implemented in the architecture. The ME/MC architecture is loaded on a single-chip MPEG-2 video encoder.