The search functionality is under construction.

Author Search Result

[Author] Toshio KONDO(5hit)

1-5hit
  • Three-Layer Cooperative Architecture for MPEG-2 Video Encoder LSI

    Mitsuo IKEDA  Toshio KONDO  Koyo NITTA  Kazuhito SUGURI  Takeshi YOSHITOME  Toshihiro MINAMI  Jiro NAGANUMA  Takeshi OGURA  

     
    PAPER

      Vol:
    E83-C No:2
      Page(s):
    170-178

    This paper presents an architecture for a single-chip MPEG-2 video encoder and demonstrates its flexibility and usefulness. The architecture based on three-layer cooperation provides flexible data-transfer that improves the encoder from the standpoints of versatility, scalability, and video quality. The LSI was successfully fabricated in the 0.25-µm four-metal CMOS process. Its small size and its low power consumption make it ideal for a wide range of applications, such as DVD recorders, PC-card encoders and HDTV encoders.

  • Efficient Telescopic Search Motion-Estimation Architecture Based on Data-Flow Optimization

    Wujian ZHANG  Runde ZHOU  Tsunehachi ISHITANI  Ryota KASAI  Toshio KONDO  

     
    PAPER-Integrated Electronics

      Vol:
    E84-C No:3
      Page(s):
    390-398

    The ring-like systolic array architecture described in this paper, based on a conventional one-dimensional systolic array architecture, was created through operator rescheduling based on the symmetry of data flow. This eliminated high-latency delay due to the stuffing of the array pipeline in the conventional architecture. The new architecture requires a memory bandwidth no greater than the conventional architecture does, but increases throughput and processor utilization while reducing power consumption.

  • Motion Estimation and Compensation Hardware Architecture for a Scene-Adaptive Algorithm on a Single-Chip MPEG-2 Video Encoder

    Koyo NITTA  Toshihiro MINAMI  Toshio KONDO  Takeshi OGURA  

     
    PAPER-VLSI Systems

      Vol:
    E84-D No:3
      Page(s):
    317-325

    This paper describes a unique motion estimation and compensation (ME/MC) hardware architecture for a scene-adaptive algorithm. By statistically analyzing the characteristics of the scene being encoded and controlling the encoding parameters according to the scene, the quality of the decoded image can be enhanced. The most significant feature of the architecture is that the two modules for ME/MC can work independently. Since a time interval can be inserted between the operations of the two modules, a scene-adaptive algorithm can be implemented in the architecture. The ME/MC architecture is loaded on a single-chip MPEG-2 video encoder.

  • Low-Power VLSI Architecture for a New Block-Matching Motion Estimation Algorithm Using Dual-Bit-Resolution Images

    Wujian ZHANG  Runde ZHOU  Tsunehachi ISHITANI  Ryota KASAI  Toshio KONDO  

     
    PAPER-Integrated Electronics

      Vol:
    E84-C No:3
      Page(s):
    399-409

    This paper describes an improved multiresolution telescopic search algorithm (MRTlcSA) for block-matching motion estimation. The algorithm uses images with full and reduced bit resolution, and uses motion-track and adaptive-search-window strategies. Simulation results show that the proposed algorithm has low computational complexity and achieves good image quality. We have developed a systolic-architecture-based search engine that has split data paths. In the case of low bit-resolution, the throughput is increased by enhancing the operating parallelism. The new motion estimator works at a low clock frequency and a low supply voltage, and therefore has low power consumption.

  • Single-Board SIMD Processors Using Gate-Array LSIs for Parallel Processing

    Toshio KONDO  Yoshimasa KIMURA  Noboru SONEHARA  

     
    PAPER

      Vol:
    E76-C No:12
      Page(s):
    1827-1834

    We have developed an SIMD processor on a double-height VME board. We achieved a good balance between cost and performance by combining four identical gate-array LSIs in the processor array with a 16-bit degital signal processor (DSP), standard dynamic random-access memories (DRAMs) and other peripherals. The gate-array LSIs have 168-bit processing elements (PEs), each containing a one-bit processing block and a serial multiplier. This PE structure offers high-level bit processing capability and peak performance of 512 million operations per second (MOPS) for 8-bit multiply and accumulate operations. Effective performance of more than 300 MOPS for 8-bit array data processing is achieved by using an LSI structure tuned to the DRAM access rate, although the processing speed is reduced by the DRAM access bottleneck. The LSIs also have two unique additional hardware structures that speed up various array data processes. One is an inter-PE routing register array for supporting a transmission, rotation and memory access path. The other is a tree-structure network for propagating operations among PEs. With these cost-effective structures, the SIMD processor is expected to be widely used for two-dimensional data processing, such as image processing and pattern recognition.