The search functionality is under construction.
The search functionality is under construction.

Author Search Result

[Author] Tsutomu ISHI(6hit)

1-6hit
  • Presto: A Bus-Connected Multiprocessor for a Rete-Based Production System

    Hideo KIKUCHI  Takashi YUKAWA  Kazumitsu MATSUZAWA  Tsutomu ISHIKAWA  

     
    PAPER-Computer Systems

      Vol:
    E75-D No:3
      Page(s):
    265-273

    This paper discusses the design, implementation, and performance of a bus-connected multiprocessor, called Presto, for a Rete-based production system. To perform a match, which is a major phase of a production system, a Presto match scheme exploits the subnetworks that are separated by the top two-input nodes and the token flow control at these nodes. Since parallelism of a production system can only increase speed 10-fold, the aim is to do so efficiently on a low-cost, compact bus-connected multi-processor system without shared memory or cache memory. The Presto hardware consists of up to 10 processisng elements (PEs), each comprising a commercial microprocessor, 4 Mbytes of local memory, and two kinds of newly developed ASIC chips for memory control and bus control. Hierarchical system software is provided for developing interpreter programs. Measurement with 10 PEs shows that sample programs run 5-7 times faster.

  • Temperature Dependence of Gain Characteristics in 1.3-µm AlGaInAs/InP Strained Multiple-Quantum-Well Semiconductor Lasers

    Toshio HIGASHI  Tsuyoshi YAMAMOTO  Tsutomu ISHIKAWA  Takuya FUJII  Haruhisa SODA  Minoru YAMADA  

     
    PAPER-Optical Active Devices and Modules

      Vol:
    E84-C No:5
      Page(s):
    648-655

    We have measured the temperature dependence of the gain characteristics in 1.3-µm AlGaInAs/InP strained multiple-quantum-well (MQW) semiconductor lasers using Hakki-Paoli method. By measuring the temperature dependences of the peak gain value and the gain peak wavelength, we evaluated the temperature dependences of the threshold current and the oscillation wavelength, respectively. The small temperature dependence of the threshold current in AlGaInAs/InP lasers is caused by the small temperature dependence of the transparency current density, which is represented by the characteristic temperature TJtr of 116 K. In AlGaInAs/InP high T0 lasers, the temperature dependence of the oscillation wavelength is slightly larger than that in GaInAsP/InP lasers because of the larger temperature dependence of bandgap wavelength 0.55 nm/K.

  • Temperature Dependence of Gain Characteristics in 1.3-µm AlGaInAs/InP Strained Multiple-Quantum-Well Semiconductor Lasers

    Toshio HIGASHI  Tsuyoshi YAMAMOTO  Tsutomu ISHIKAWA  Takuya FUJII  Haruhisa SODA  Minoru YAMADA  

     
    PAPER-Optical Active Devices and Modules

      Vol:
    E84-B No:5
      Page(s):
    1274-1281

    We have measured the temperature dependence of the gain characteristics in 1.3-µm AlGaInAs/InP strained multiple-quantum-well (MQW) semiconductor lasers using Hakki-Paoli method. By measuring the temperature dependences of the peak gain value and the gain peak wavelength, we evaluated the temperature dependences of the threshold current and the oscillation wavelength, respectively. The small temperature dependence of the threshold current in AlGaInAs/InP lasers is caused by the small temperature dependence of the transparency current density, which is represented by the characteristic temperature TJtr of 116 K. In AlGaInAs/InP high T0 lasers, the temperature dependence of the oscillation wavelength is slightly larger than that in GaInAsP/InP lasers because of the larger temperature dependence of bandgap wavelength 0.55 nm/K.

  • Highly Reliable and Compact InP-Based In-Phase and Quadrature Modulators for Over 400 Gbit/s Coherent Transmission Systems

    Hajime TANAKA  Tsutomu ISHIKAWA  Takashi KITAMURA  Masataka WATANABE  Ryuji YAMABI  Ryo YAMAGUCHI  Naoya KONO  Takehiko KIKUCHI  Morihiro SEKI  Tomokazu KATSUYAMA  Mitsuru EKAWA  Hajime SHOJI  

     
    PAPER

      Pubricized:
    2020/07/10
      Vol:
    E103-C No:11
      Page(s):
    661-668

    We fabricated an InP-based dual-polarization In-phase and Quadrature (DP-IQ) modulator consisting of a Mach-Zehnder (MZ) modulator array integrated with RF termination resistors and backside via holes for high-bandwidth coherent driver modulators and revealed its high reliability. These integrations allowed the chip size (Chip size: 4.4mm×3mm) to be reduced by 59% compared with the previous chip without these integrations, that is, the previous chip needed 8 chip-resistors for terminating RF signals and 12 RF electrode pads for the electrical connection with these resistors in a Signal-Ground-Signal configuration. This MZ modulator exhibited a 3-dB bandwidth of around 40 GHz as its electrical/optical response, which is sufficient for over 400 Gbit/s coherent transmission systems using 16-ary quadrature amplitude modulation (QAM) and 64QAM signals. Also, we investigated a rapid degradation which affects the reliability of InP-based DP-IQ modulators. This rapid degradation we called optical damage is caused by strong incident light power and a high reverse bias voltage condition at the entrance of an electrode in each arm of the MZ modulators. This rapid degradation makes it difficult to estimate the lifetime of the chip using an accelerated aging test, because the value of the breakdown voltage which induces optical damage varies considerably depending on conditions, such as light power, operation wavelength, and chip temperature. Therefore, we opted for the step stress test method to investigate the lifetime of the chip. As a result, we confirmed that optical damage occurred when photo-current density at the entrance of an electrode exceeded threshold current density and demonstrated that InP-based modulators did not degrade unless operation conditions reached threshold current density. This threshold current density was independent of incident light power, operation wavelength and chip temperature.

  • LSI On-Chip Optical Interconnection with Si Nano-Photonics

    Junichi FUJIKATA  Kenichi NISHI  Akiko GOMYO  Jun USHIDA  Tsutomu ISHI  Hiroaki YUKAWA  Daisuke OKAMOTO  Masafumi NAKADA  Takanori SHIMIZU  Masao KINOSHITA  Koichi NOSE  Masayuki MIZUNO  Tai TSUCHIZAWA  Toshifumi WATANABE  Koji YAMADA  Seiichi ITABASHI  Keishi OHASHI  

     
    INVITED PAPER

      Vol:
    E91-C No:2
      Page(s):
    131-137

    LSI on-chip optical interconnections are discussed from the viewpoint of a comparison between optical and electrical interconnections. Based on a practical prediction of our optical device development, optical interconnects will have an advantage over electrical interconnects within a chip that has an interconnect length less than about 10 mm at the hp32-22 nm technology node. Fundamental optical devices and components used in interconnections have also been introduced that are small enough to be placed on top of a Si LSI and that can be fabricated using methods compatible with CMOS processes. A SiON waveguide showed a low propagation loss around 0.3 dB/cm at a wavelength of 850 nm, and excellent branching characteristics were achieved for MMI (multimode interference) branch structures. A Si nano-photodiode showed highly enhanced speed and efficiency with a surface plasmon antenna. By combining our Si nano-photonic devices with the advanced TIA-less optical clock distribution circuits, clock distribution above 10 GHz can be achieved with a small footprint on an LSI chip.

  • Minimum-Phase Charge-Coupled Transversal Filters and Tap Gain Error Considerations

    Takayoshi ENOMOTO  Tsutomu ISHIHARA  Shigeo FUSHIMI  

     
    LETTER-Integrated Circuits

      Vol:
    E63-E No:3
      Page(s):
    204-205

    A minimum phase split-electrode CCD lowpass filter having a considerably reduced number of taps was designed and fabricated. Calculated frequency responses with varieties of tap gain errors and observed response were compared. Reducing the number of taps was shown to be less sensitive to tap gain errors.