The search functionality is under construction.

Author Search Result

[Author] Wenpo ZHANG(3hit)

1-3hit
  • Scan Shift Time Reduction Using Test Compaction for On-Chip Delay Measurement

    Wenpo ZHANG  Kazuteru NAMBA  Hideo ITO  

     
    PAPER-Dependable Computing

      Vol:
    E97-D No:3
      Page(s):
    533-540

    In recent VLSIs, small-delay defects, which are hard to detect by traditional delay fault testing, can bring about serious issues such as short lifetime. To detect small-delay defects, on-chip delay measurement which measures the delay time of paths in the circuit under test (CUT) was proposed. However, this approach incurs high test cost because it uses scan design, which brings about long test application time due to scan shift operation. Our solution is a test application time reduction method for testing using the on-chip path delay measurement. The testing with on-chip path delay measurement does not require capture operations, unlike the conventional delay testing. Specifically, FFs keep the transition pattern of the test pattern pair sensitizing a path under measurement (PUM) (denoted as p) even after the measurement of p. The proposed method uses this characteristic. The proposed method reduces scan shift time and test data volume using test pattern merging. Evaluation results on ISCAS89 benchmark circuits indicate that the proposed method reduces the test application time by 6.89∼62.67% and test data volume by 46.39∼74.86%.

  • Improving Test Coverage by Measuring Path Delay Time Including Transmission Time of FF

    Wenpo ZHANG  Kazuteru NAMBA  Hideo ITO  

     
    LETTER-Dependable Computing

      Vol:
    E96-D No:5
      Page(s):
    1219-1222

    As technology scales to 45 nm and below, the reliability of VLSI declines due to small delay defects, which are hard to detect by functional clock frequency. To detect small delay defects, a method which measures the delay time of path in circuit under test (CUT) was proposed. However, because a large number of FFs exist in recent VLSI, the probability that the resistive defect occurs in the FFs is increased. A test method measuring path delay time including the transmission time of FFs is necessary. However, the path measured by the conventional on-chip path delay time measurement method does not include a part of a master latch. Thus, testing using the conventional measurement method cannot detect defects occurring on the part. This paper proposes an improved on-chip path delay time measurement method. Test coverage is improved by measuring the path delay time including transmission time of a master latch. The proposed method uses a duty-cycle-modified clock signal. Evaluation results show that, the proposed method improves test coverage 5.2511.28% with the same area overhead as the conventional method.

  • Improving Small-Delay Fault Coverage of On-Chip Delay Measurement by Segmented Scan and Test Point Insertion

    Wenpo ZHANG  Kazuteru NAMBA  Hideo ITO  

     
    PAPER-Dependable Computing

      Vol:
    E97-D No:10
      Page(s):
    2719-2729

    With IC design entering the nanometer scale integration, the reliability of VLSI has declined due to small-delay defects, which are hard to detect by traditional delay fault testing. To detect small-delay defects, on-chip delay measurement, which measures the delay time of paths in the circuit under test (CUT), was proposed. However, our pre-simulation results show that when using on-chip delay measurement method to detect small-delay defects, test generation under the single-path sensitization is required. This constraint makes the fault coverage very low. To improve fault coverage, this paper introduces techniques which use segmented scan and test point insertion (TPI). Evaluation results indicate that we can get an acceptable fault coverage, by combining these techniques for launch off shift (LOS) testing under the single-path sensitization condition. Specifically, fault coverage is improved 27.02∼47.74% with 6.33∼12.35% of hardware overhead.