The search functionality is under construction.
The search functionality is under construction.

Author Search Result

[Author] Yuta SASAKI(2hit)

1-2hit
  • Co-simulation of On-Chip and On-Board AC Power Noise of CMOS Digital Circuits

    Kumpei YOSHIKAWA  Yuta SASAKI  Kouji ICHIKAWA  Yoshiyuki SAITO  Makoto NAGATA  

     
    PAPER-Device and Circuit Modeling and Analysis

      Vol:
    E95-A No:12
      Page(s):
    2284-2291

    Capacitor charging modeling efficiently and accurately represents power consumption current of CMOS digital circuits and actualizes co-simulation of AC power noise including the interaction with on-chip and on-board integrated power delivery network (PDN). It is clearly demonstrated that the AC power noise is dominantly characterized by the frequency-dependent impedance of PDN and also by the operating frequency of circuits as well. A 65 nm CMOS chip exhibits the AC power noise components in substantial relation with the parallel resonance of the PDN seen from on-chip digital circuits. An on-chip noise monitor measures in-circuit power supply voltage, while a near-field magnetic probing derives on-board power supply current. The proposed co-simulation well matches the power noise measurements. The proposed AC noise co-simulation will be essentially applicable in the design of PDNs toward on-chip power supply integrity (PSI) and off-chip electromagnetic compatibility (EMC).

  • Accurate 3-Dimensional Imaging Method by Multi-Static RPM with Range Point Clustering for Short Range UWB Radar

    Yuta SASAKI  Fang SHANG  Shouhei KIDERA  Tetsuo KIRIMOTO  

     
    PAPER-Sensing

      Pubricized:
    2017/01/27
      Vol:
    E100-B No:8
      Page(s):
    1498-1506

    Ultra-wideband millimeter wave radars significantly enhance the capabilities of three-dimensional (3D) imaging sensors, making them suitable for short-range surveillance and security purposes. For such applications, developed the range point migration (RPM) method, which achieves highly accurate surface extraction by using a range-point focusing scheme. However, this method is inaccurate and incurs great computation cost for complicated-shape targets with many reflection points, such as the human body. As an essential solution to this problem, we introduce herein a range-point clustering algorithm that exploits, the RPM feature. Results from numerical simulations assuming 140-GHz millimeter wavelength radar verify that the proposed method achieves remarkably accurate 3D imaging without sacrificing computational efficiency.