1-2hit |
Kunihiko KOZARU Atsushi KINOSHITA Tomohisa WADA Yutaka ARITA Michihiro YAMADA
This paper presents Super-CMOS SRAM process technology that integrates bipolar and CMOS transistors in a chip while adding only one ion implantation step and no lithography mask steps to the conventional CMOS SRAM process. The Super-CMOS SRAM process therefore has the same process cost as the CMOS SRAMs, while it achieves higher access speeds. In order to demonstrate the Super-CMOS SRAM, we have developed a 3.3 V/5 V 256 kb SRAM using 0.4 µm Super-CMOS process technology. By applying bipolar transistors to the sense amplifier circuits, a high-speed access time of 5.8 ns with a 3.0 V power supply is successfully achieved.
Akira YAMAZAKI Tadato YAMAGATA Yutaka ARITA Makoto TANIGUCHI Michihiro YAMADA
The features for the integration of 1Tr/1C DRAM and logic for graphic and multimedia applications are surveyed. The key circuit/process technology for large scale embedded DRAM cores is described. The methods to improve transistor performance and gate density are shown. Noise immunity design and easy customization techniques are also introduced.