The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] (42807hit)

7521-7540hit(42807hit)

  • Enhancing Event-Related Potentials Based on Maximum a Posteriori Estimation with a Spatial Correlation Prior

    Hayato MAKI  Tomoki TODA  Sakriani SAKTI  Graham NEUBIG  Satoshi NAKAMURA  

     
    PAPER

      Pubricized:
    2016/04/01
      Vol:
    E99-D No:6
      Page(s):
    1437-1446

    In this paper a new method for noise removal from single-trial event-related potentials recorded with a multi-channel electroencephalogram is addressed. An observed signal is separated into multiple signals with a multi-channel Wiener filter whose coefficients are estimated based on parameter estimation of a probabilistic generative model that locally models the amplitude of each separated signal in the time-frequency domain. Effectiveness of using prior information about covariance matrices to estimate model parameters and frequency dependent covariance matrices were shown through an experiment with a simulated event-related potential data set.

  • Discrete Spherical Laplacian Operator

    Shigang LI  Hiroya FUNAKI  

     
    LETTER-Image Recognition, Computer Vision

      Pubricized:
    2016/03/11
      Vol:
    E99-D No:6
      Page(s):
    1716-1719

    Laplacian operator is a basic tool for image processing. For an image with regular pixels, the Laplacian operator can be represented as a stencil in which constant weights are arranged spatially to indicate which picture cells they apply to. However, in a discrete spherical image the image pixels are irregular; thus, a stencil with constant weights is not suitable. In this paper a spherical Laplacian operator is derived from Gauss's theorem; which is suitable to images with irregular pixels. The effectiveness of the proposed discrete spherical Laplacian operator is shown by the experimental results.

  • Efficient Two-Step Middle-Level Part Feature Extraction for Fine-Grained Visual Categorization

    Hideki NAKAYAMA  Tomoya TSUDA  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2016/02/23
      Vol:
    E99-D No:6
      Page(s):
    1626-1634

    Fine-grained visual categorization (FGVC) has drawn increasing attention as an emerging research field in recent years. In contrast to generic-domain visual recognition, FGVC is characterized by high intra-class and subtle inter-class variations. To distinguish conceptually and visually similar categories, highly discriminative visual features must be extracted. Moreover, FGVC has highly specialized and task-specific nature. It is not always easy to obtain a sufficiently large-scale training dataset. Therefore, the key to success in practical FGVC systems is to efficiently exploit discriminative features from a limited number of training examples. In this paper, we propose an efficient two-step dimensionality compression method to derive compact middle-level part-based features. To do this, we compare both space-first and feature-first convolution schemes and investigate their effectiveness. Our approach is based on simple linear algebra and analytic solutions, and is highly scalable compared with the current one-vs-one or one-vs-all approach, making it possible to quickly train middle-level features from a number of pairwise part regions. We experimentally show the effectiveness of our method using the standard Caltech-Birds and Stanford-Cars datasets.

  • Fast Algorithm for Computing Analysis Windows in Real-Valued Discrete Gabor Transform

    Rui LI  Liang TAO  

     
    LETTER-Fundamentals of Information Systems

      Pubricized:
    2016/02/29
      Vol:
    E99-D No:6
      Page(s):
    1682-1685

    Based on the completeness of the real-valued discrete Gabor transform, a new biorthogonal relationship between analysis window and synthesis window is derived and a fast algorithm for computing the analysis window is presented for any given synthesis window. The new biorthogonal relationship can be expressed as a linear equation set, which can be separated into a certain number of independent sub-equation sets, where each of them can be fast and independently solved by using convolution operations and FFT to obtain the analysis window for any given synthesis window. Computational complexity analysis and comparison indicate that the proposed algorithm can save a considerable amount of computation and is more efficient than the existing algorithms.

  • Key Frame Extraction Based on Chaos Theory and Color Information for Video Summarization

    Jaeyong JU  Taeyup SONG  Bonhwa KU  Hanseok KO  

     
    LETTER-Image Processing and Video Processing

      Pubricized:
    2016/02/23
      Vol:
    E99-D No:6
      Page(s):
    1698-1701

    Key frame based video summarization has emerged as an important task for efficient video data management. This paper proposes a novel technique for key frame extraction based on chaos theory and color information. By applying chaos theory, a large content change between frames becomes more chaos-like and results in a more complex fractal trajectory in phase space. By exploiting the fractality measured in the phase space between frames, it is possible to evaluate inter-frame content changes invariant to effects of fades and illumination change. In addition to this measure, the color histogram-based measure is also used to complement the chaos-based measure which is sensitive to changes of camera /object motion. By comparing the last key frame with the current frame based on the proposed frame difference measure combining these two complementary measures, the key frames are robustly selected even under presence of video fades, changes of illumination, and camera/object motion. The experimental results demonstrate its effectiveness with significant improvement over the conventional method.

  • Non-Linear Extension of Generalized Hyperplane Approximation

    Hyun-Chul CHOI  

     
    LETTER-Image Recognition, Computer Vision

      Pubricized:
    2016/02/29
      Vol:
    E99-D No:6
      Page(s):
    1707-1710

    A non-linear extension of generalized hyperplane approximation (GHA) method is introduced in this letter. Although GHA achieved a high-confidence result in motion parameter estimation by utilizing the supervised learning scheme in histogram of oriented gradient (HOG) feature space, it still has unstable convergence range because it approximates the non-linear function of regression from the feature space to the motion parameter space as a linear plane. To extend GHA into a non-linear regression for larger convergence range, we derive theoretical equations and verify this extension's effectiveness and efficiency over GHA by experimental results.

  • Generation of Oil-Film-Like Images by Bilateral Infra-Envelope Filter

    Toru HIRAOKA  Kiichi URAHAMA  

     
    LETTER-Computer Graphics

      Pubricized:
    2016/03/11
      Vol:
    E99-D No:6
      Page(s):
    1724-1728

    A non-photorealistic rendering method creates oil-film-like images, expressed with colorful, smooth curves similar to the oil films generated on the surface of glass or water, from color photo images. The proposed method generates oil-film-like images through iterative processing between a bilateral infra-envelope filter and an unsharp mask. In order to verify the effectiveness of the proposed method, tests using a Lena image were performed, and visual assessment of oil-film-like images was conducted for changes in appearance as the parameter values of the proposed method were varied. As a result of tests, the optimal value of parameters was found for generating oil-film patterns.

  • Lexical Network Analysis on an Online Explanation Task: Effects of Affect and Embodiment of a Pedagogical Agent

    Yugo HAYASHI  

     
    PAPER

      Pubricized:
    2016/04/01
      Vol:
    E99-D No:6
      Page(s):
    1455-1461

    The present study investigated the performance of text-based explanation for a large number of learners in an online tutoring task guided by a Pedagogical Conversational Agent (PCA). In the study, a lexical network analysis that focused on the co-occurrence of keywords in learner's explanation text, which were used as dependent variables, was performed. This method was used to investigate how the variables, which consisted of expressions of emotion, embodied characteristics of the PCA, and personal characteristics of the learner, influenced the performance of the explanation text. The learners (participants) were students enrolled in a psychology class. The learners provided explanations to a PCA one-on-one as an after-school activity. In this activity, the PCA, portraying the role of a questioner, asked the learners to explain a key concept taught in their class. The students were randomly assigned one key term out of 30 and were asked to formulate explanations by answering different types of questions. The task consisted of 17 trials. More than 300 text-based explanation dialogues were collected from learners using a web-based explanation system, and the factors influencing learner performance were investigated. Machine learning results showed that during the explanation activity, the expressions used and the gender of the PCA influenced learner performance. Results showed that (1) learners performed better when a male PCA expressed negative emotions as opposed to when a female PCA expressed negative emotions, and (2) learners performed better when a female PCA expressed positive expressions as opposed to when a female PCA expressed negative expressions. This paper provides insight into capturing the behavior of humans performing online tasks, and it puts forward suggestions related to the design of an efficient online tutoring system using PCA.

  • Fast Lyric Area Extraction from Images of Printed Korean Music Scores

    Cong Minh DINH  Hyung Jeong YANG  Guee Sang LEE  Soo Hyung KIM  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2016/02/23
      Vol:
    E99-D No:6
      Page(s):
    1576-1584

    In recent years, optical music recognition (OMR) has been extensively developed, particularly for use with mobile devices that require fast processing to recognize and play live the notes in images captured from sheet music. However, most techniques that have been developed thus far have focused on playing back instrumental music and have ignored the importance of lyric extraction, which is time consuming and affects the accuracy of the OMR tools. The text of the lyrics adds complexity to the page layout, particularly when lyrics touch or overlap musical symbols, in which case it is very difficult to separate them from each other. In addition, the distortion that appears in captured musical images makes the lyric lines curved or skewed, making the lyric extraction problem more complicated. This paper proposes a new approach in which lyrics are detected and extracted quickly and effectively. First, in order to resolve the distortion problem, the image is undistorted by a method using information of stave lines and bar lines. Then, through the use of a frequency count method and heuristic rules based on projection, the lyric areas are extracted, the cases where symbols touch the lyrics are resolved, and most of the information from the musical notation is kept even when the lyrics and music notes are overlapping. Our algorithm demonstrated a short processing time and remarkable accuracy on two test datasets of images of printed Korean musical scores: the first set included three hundred scanned musical images; the second set had two hundred musical images that were captured by a digital camera.

  • DynamicAdjust: Dynamic Resource Adjustment for Mitigating Skew in MapReduce

    Zhihong LIU  Aimal KHAN  Peixin CHEN  Yaping LIU  Zhenghu GONG  

     
    LETTER-Fundamentals of Information Systems

      Pubricized:
    2016/03/07
      Vol:
    E99-D No:6
      Page(s):
    1686-1689

    MapReduce still suffers from a problem known as skew, where load is unevenly distributed among tasks. Existing solutions follow a similar pattern that estimates the load of each task and then rebalances the load among tasks. However, these solutions often incur heavy overhead due to the load estimation and rebalancing. In this paper, we present DynamicAdjust, a dynamic resource adjustment technique for mitigating skew in MapReduce. Instead of rebalancing the load among tasks, DynamicAdjust adjusts resources dynamically for the tasks that need more computation, thereby accelerating these tasks. Through experiments using real MapReduce workloads on a 21-node Hadoop cluster, we show that DynamicAdjust can effectively mitigate the skew and speed up the job completion time by up to 37.27% compared to the native Hadoop YARN.

  • Exploiting EEG Channel Correlations in P300 Speller Paradigm for Brain-Computer Interface

    Yali LI  Hongma LIU  Shengjin WANG  

     
    PAPER-Biological Engineering

      Pubricized:
    2016/03/07
      Vol:
    E99-D No:6
      Page(s):
    1653-1662

    A brain-computer interface (BCI) translates the brain activity into commands to control external devices. P300 speller based character recognition is an important kind of application system in BCI. In this paper, we propose a framework to integrate channel correlation analysis into P300 detection. This work is distinguished by two key contributions. First, a coefficient matrix is introduced and constructed for multiple channels with the elements indicating channel correlations. Agglomerative clustering is applied to group correlated channels. Second, the statistics of central tendency are used to fuse the information of correlated channels and generate virtual channels. The generated virtual channels can extend the EEG signals and lift up the signal-to-noise ratio. The correlated features from virtual channels are combined with original signals for classification and the outputs of discriminative classifier are used to determine the characters for spelling. Experimental results prove the effectiveness and efficiency of the channel correlation analysis based framework. Compared with the state-of-the-art, the recognition rate was increased by both 6% with 5 and 10 epochs by the proposed framework.

  • Dominant Fairness Fairness: Hierarchical Scheduling for Multiple Resources in Heterogeneous Datacenters

    Wenzhu WANG  Kun JIANG  Yusong TAN  Qingbo WU  

     
    LETTER-Fundamentals of Information Systems

      Pubricized:
    2016/03/03
      Vol:
    E99-D No:6
      Page(s):
    1678-1681

    Hierarchical scheduling for multiple resources is partially responsible for the performance achievements in large scale datacenters. However, the latest scheduling technique, Hierarchy Dominant Resource Fairness (H-DRF)[1], has some shortcomings in heterogeneous environments, such as starving certain jobs or unfair resource allocation. This is because a heterogeneous environment brings new challenges. In this paper, we propose a novel scheduling algorithm called Dominant Fairness Fairness (DFF). DFF tries to keep resource allocation fair, avoid job starvation, and improve system resource utilization. We implement DFF in the YARN system, a most commonly used scheduler for large scale clusters. The experimental results show that our proposed algorithm leads to higher resource utilization and better throughput than H-DRF.

  • Estimating Head Orientation Using a Combination of Multiple Cues

    Bima Sena Bayu DEWANTARA  Jun MIURA  

     
    PAPER-Human-computer Interaction

      Pubricized:
    2016/03/03
      Vol:
    E99-D No:6
      Page(s):
    1603-1614

    This paper proposes an appearance-based novel descriptor for estimating head orientation. Our descriptor is inspired by the Weber-based feature, which has been successfully implemented for robust texture analysis, and the gradient which performs well for shape analysis. To further enhance the orientation differences, we combine them with an analysis of the intensity deviation. The position of a pixel and its intrinsic intensity are also considered. All features are then composed as a feature vector of a pixel. The information carried by each pixel is combined using a covariance matrix to alleviate the influence caused by rotations and illumination. As the result, our descriptor is compact and works at high speed. We also apply a weighting scheme, called Block Importance Feature using Genetic Algorithm (BIF-GA), to improve the performance of our descriptor by selecting and accentuating the important blocks. Experiments on three head pose databases demonstrate that the proposed method outperforms the current state-of-the-art methods. Also, we can extend the proposed method by combining it with a head detection and tracking system to enable it to estimate human head orientation in real applications.

  • An Extension of MUSIC Exploiting Higher-Order Moments via Nonlinear Mapping

    Yuya SUGIMOTO  Shigeki MIYABE  Takeshi YAMADA  Shoji MAKINO  Biing-Hwang JUANG  

     
    PAPER-Engineering Acoustics

      Vol:
    E99-A No:6
      Page(s):
    1152-1162

    MUltiple SIgnal Classification (MUSIC) is a standard technique for direction of arrival (DOA) estimation with high resolution. However, MUSIC cannot estimate DOAs accurately in the case of underdetermined conditions, where the number of sources exceeds the number of microphones. To overcome this drawback, an extension of MUSIC using cumulants called 2q-MUSIC has been proposed, but this method greatly suffers from the variance of the statistics, given as the temporal mean of the observation process, and requires long observation. In this paper, we propose a new approach for extending MUSIC that exploits higher-order moments of the signal for the underdetermined DOA estimation with smaller variance. We propose an estimation algorithm that nonlinearly maps the observed signal onto a space with expanded dimensionality and conducts MUSIC-based correlation analysis in the expanded space. Since the dimensionality of the noise subspace is increased by the mapping, the proposed method enables the estimation of DOAs in the case of underdetermined conditions. Furthermore, we describe the class of mapping that allows us to analyze the higher-order moments of the observed signal in the original space. We compare 2q-MUSIC and the proposed method through an experiment assuming that the true number of sources is known as prior information to evaluate in terms of the bias-variance tradeoff of the statistics and computational complexity. The results clarify that the proposed method has advantages for both computational complexity and estimation accuracy in short-time analysis, i.e., the time duration of the analyzed data is short.

  • A Novel Dictionary-Based Method for Test Data Compression Using Heuristic Algorithm

    Diancheng WU  Jiarui LI  Leiou WANG  Donghui WANG  Chengpeng HAO  

     
    BRIEF PAPER-Semiconductor Materials and Devices

      Vol:
    E99-C No:6
      Page(s):
    730-733

    This paper presents a novel data compression method for testing integrated circuits within the selective dictionary coding framework. Due to the inverse value of dictionary indices made use of for the compatibility analysis with the heuristic algorithm utilized to solve the maximum clique problem, the method can obtain a higher compression ratio than existing ones.

  • On the Stack Number and the Queue Number of the Bubble-Sort Graph

    Yuuki TANAKA  

     
    PAPER

      Vol:
    E99-A No:6
      Page(s):
    1012-1018

    In this paper, we consider the stack layout of the bubble-sort graph. The bubble-sort graph is a type of Cayley graph on a symmetric group; the bubble-sort graph has an important role for the study of Cayley graphs as interconnection networks. The stack layout and the queue layout problem that are treated in this paper have been studied widely. In this paper, we show that the stack number of the bubble-sort graph BS(n) is either n-1 or n-2. In addition, we show that an upper bound of the queue number of BS(n) is n-2.

  • Lower Trunk Acceleration Signals Reflect Fall Risk During Walking

    Yoshitaka OTANI  Osamu AOKI  Tomohiro HIROTA  Hiroshi ANDO  

     
    LETTER

      Pubricized:
    2016/04/01
      Vol:
    E99-D No:6
      Page(s):
    1482-1484

    The purpose of this study is to make available a fall risk assessment for stroke patients during walking using an accelerometer. We assessed gait parameters, normalized root mean squared acceleration (NRMSA) and berg balance scale (BBS) values. Walking dynamics were better reflected in terms of the risk of falls during walking by NRMSA compared to the BBS.

  • Synchronization of Relaxation Oscillators Having Individual Difference by Non-Periodic Signal Injection

    Takuya KURIHARA  Kenya JIN'NO  

     
    PAPER-Nonlinear Problems

      Vol:
    E99-A No:6
      Page(s):
    1188-1197

    In this study we investigate the synchronization of relaxation oscillators having individual differences by using non-periodic signal injection. When a common non-periodic signal is injected into the relaxation oscillators, the oscillators exhibit synchronization phenomena. Such synchronization phenomena can be classified as injection locking. We also consider the relation between the synchronization state and the individual difference. Further, we pay attention to the effect of the fluctuation range of the non-periodic injected signal. When the fluctuation range is wide, we confirm that the synchronization range increases if the individual difference is small.

  • A Study of the Characteristics of MEMD for Fractional Gaussian Noise

    Huan HAO  Huali WANG  Naveed UR REHMAN  Hui TIAN  

     
    LETTER-Digital Signal Processing

      Vol:
    E99-A No:6
      Page(s):
    1228-1232

    The dyadic filter bank property of multivariate empirical mode decomposition (MEMD) for white Gaussian noise (WGN) is well established. In order to investigate the way MEMD behaves in the presence of fractional Gaussian noise (fGn), we conduct thorough numerical experiments for MEMD for fGn inputs. It turns out that similar to WGN, MEMD follows dyadic filter bank structure for fGn inputs, which is more stable than empirical mode decomposition (EMD) regardless of the Hurst exponent. Moreover, the estimation of the Hurst exponent of fGn contaminated with different kinds of signals is also presented via MEMD in this work.

  • Energy Efficient Power Allocation for Delay-QoS Constrained Cognitive Radio Networks

    Ding XU  Qun LI  

     
    LETTER-Communication Theory and Signals

      Vol:
    E99-A No:6
      Page(s):
    1264-1267

    The problem of power allocation in maximizing the energy efficiency of the secondary user (SU) in a delay quality-of-service (QoS) constrained CR network is investigated in this paper. The average interference power constraint is used to protect the transmission of the primary user (SU). The energy efficiency is expressed as the ratio of the effective capacity to the total power consumption. By using non-linear fractional programming and convex optimization theory, we develop an energy efficiency power allocation scheme based on the Dinkelbach method and the Lagrange multiplier method. Numerical results show that the proposed scheme outperforms the existing schemes, in terms of energy efficiency.

7521-7540hit(42807hit)