The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] (42807hit)

7741-7760hit(42807hit)

  • A SoC Integrating ADC and 2DDWT for Video/Image Processing

    Chin-Fa HSIEH  Tsung-Han TSAI  Shu-Chung YI  

     
    PAPER-Electronic Circuits

      Vol:
    E99-C No:3
      Page(s):
    415-426

    The memory issue plays a very important role for the performance evaluation of a design of 2-Dimensional Discrete Wavelet Transform (2DDWT). A traditional 2DDWT architecture generally needs DRAM to store the input pixel and memory to store temporary results between the row and column processors. In this article, we present a system on a chip (SoC) for video/image processing. The chip integrates an analog-to-digital converter (ADC) with a highly efficient-memory 2DDWT. The latter one contains two main components only: a row processor and a column processor. With this integrated chip plus the use of feedback shift registers (FSR) in the column processor, the architecture we propose can disuse the DRAM and reduce the memory. The pipelined technique is also utilized in the proposed 2DDWT to shorten the critical path to an adder delay. Our architecture outperforms the existing architectures in that it uses less memory size and has low control complexity. It needs only a 2N register instead of a 3.5N register of traditional architectures for a one-level 2DDWT of the 5/3 Lifting-based Discrete Wavelet Transform (LDWT) in an N x N image. Our 2DDWT architecture is coded in VerilogHDL and the Synopsys Design Compiler is employed to synthesize the design with the standard-cell from TSMC 0.18 µm cell library for verification. The ADC is designed by a full-custom methodology, plays as an IP of the SoC. With the integrated SoC, based on the mix-mode design flow, the proposed work requires no external memory, which accordingly reduces the power consumption by memory access and 20 I/O PADs, it also reduces the printed circuit board (PCB) size. Moreover, the proposed SoC supports the resolution of 10 bits and can easily integrate further with the CMOS image sensor (CIS) or other IPs. This, then, completes a single chip and which is ready for a real-time wavelet-based video coding.

  • An InP-Based 27-GHz-Bandwidth Limiting TIA IC Designed to Suppress Undershoot and Ringing in Its Output Waveform

    Hiroyuki FUKUYAMA  Michihiro HIRATA  Kenji KURISHIMA  Minoru IDA  Masami TOKUMITSU  Shogo YAMANAKA  Munehiko NAGATANI  Toshihiro ITOH  Kimikazu SANO  Hideyuki NOSAKA  Koichi MURATA  

     
    PAPER-Electronic Circuits

      Vol:
    E99-C No:3
      Page(s):
    385-396

    A design scheme for a high-speed differential-input limiting transimpedance amplifier (TIA) was developed. The output-stage amplifier of the TIA is investigated in detail in order to suppress undershoot and ringing in the output waveform. The amplifier also includes a peak detector for the received signal strength indicator (RSSI) output, which is used to control the optical demodulator for differential-phase-shift-keying or differential-quadrature-phase-shift-keying formats. The limiting TIA was fabricated on the basis of 1-µm emitter-width InP-based heterojunction-bipolar-transistor (HBT) IC technology. Its differential gain is 39 dB, its 3-dB bandwidth is 27 GHz, and its estimated differential transimpedance gain is 73 dBΩ. The obtained output waveform shows that the developed design scheme is effective for suppressing undershoot and ringing.

  • Contribution of Treatment Temperature on Quantum Efficiency of Negative Electron Affinity (NEA)-GaAs

    Yuta INAGAKI  Kazuya HAYASE  Ryosuke CHIBA  Hokuto IIJIMA  Takashi MEGURO  

     
    PAPER

      Vol:
    E99-C No:3
      Page(s):
    371-375

    Quantum efficiency (QE) evolution by several negative electron affinity (NEA) activation process for p-doped GaAs(100) specimen has been studied. We have carried out the surface pretreatment at 580°C or 480°C and the successive NEA activation process at room temperature (R.T.). When the NEA surface was degraded, the surface was refreshed by above pretreatment and activation process, and approximately 0.10 of QE was repeatedly obtained. It was found that the higher QE of 0.13 was achieved with the reduced pretreatment temperature at 480°C with the specific experimental conditions. This is probably caused by the residual Cs-related compounds playing an important role of the electron emission. In addition, after the multiple pretreatment and activation sequence, surface morphology of GaAs remarkably changed.

  • Optical Filters Based on Nano-Sized Hole and Slit Patterns in Aluminum Films

    Daisuke INOUE  Atsushi MIURA  Tsuyoshi NOMURA  Hisayoshi FUJIKAWA  Kazuo SATO  Naoki IKEDA  Daiju TSUYA  Yoshimasa SUGIMOTO  Yasuo KOIDE  

     
    PAPER

      Vol:
    E99-C No:3
      Page(s):
    358-364

    The optical properties of arrays of nanoholes and nanoslits in Al films were investigated both numerically and experimentally. The choice of Al was based on its low cost and ease of processing, in addition to the fact that it has a higher plasma frequency than gold or silver, leading to lower optical losses at wavelengths of 400 to 500nm.

  • Room-Temperature Gold-Gold Bonding Method Based on Argon and Hydrogen Gas Mixture Atmospheric-Pressure Plasma Treatment for Optoelectronic Device Integration Open Access

    Eiji HIGURASHI  Michitaka YAMAMOTO  Takeshi SATO  Tadatomo SUGA  Renshi SAWADA  

     
    INVITED PAPER

      Vol:
    E99-C No:3
      Page(s):
    339-345

    Low-temperature bonding methods of optoelectronic chips, such as laser diodes (LD) and photodiode (PD) chips, have been the focus of much interest to develop highly functional and compact optoelectronic devices, such as microsensors and communication modules. In this paper, room-temperature bonding of the optoelectronic chips with Au thin film to coined Au stud bumps with smooth surfaces (Ra: 1.3nm) using argon and hydrogen gas mixture atmospheric-pressure plasma was demonstrated in ambient air. The die-shear strength was high enough to exceed the strength requirement of MIL-STD-883F, method 2019 (×2). The measured results of the light-current-voltage characteristics of the LD chips and the dark current-voltage characteristics of the PD chips indicated no degradation after bonding.

  • Recent Situation of the UV Imprint Lithography and Its Application to the Photonics Devices Open Access

    Masashi NAKAO  

     
    INVITED PAPER

      Vol:
    E99-C No:3
      Page(s):
    333-338

    The individual steps of UV imprint lithography have been explained in detail from the points of manufacturing nano-structures. The applications to photonic devices have been also introduced.

  • Wheeze Detection Algorithm Based on Correlation-Coefficients Analysis

    Jiarui LI  Ying HONG  Chengpeng HAO  

     
    LETTER-Digital Signal Processing

      Vol:
    E99-A No:3
      Page(s):
    760-764

    Wheeze is a general sign for obstructive airway diseases whose clinical diagnosis mainly depends on auscultating or X-ray imaging with subjectivity or harm. Therefore, this paper introduces an automatic, noninvasive method to detect wheeze which consists of STFT decomposition, preprocessing of the spectrogram, correlation-coefficients calculating and duration determining. In particular, duration determining takes the Haas effect into account, which facilitates us to achieve a better determination. Simulation result shows that the sensibility (SE), the specificity (SP) and the accuracy (AC) are 88.57%, 97.78% and 93.75%, respectively, which indicates that this method could be an efficient way to detect wheeze.

  • A Packet-In Message Filtering Mechanism for Protection of Control Plane in OpenFlow Switches

    Daisuke KOTANI  Yasuo OKABE  

     
    PAPER-Information Network

      Pubricized:
    2015/12/09
      Vol:
    E99-D No:3
      Page(s):
    695-707

    Protecting control planes in networking hardware from high rate packets is a critical issue for networks under operation. One common approach for conventional networking hardware is to offload expensive functions onto hard-wired offload engines as ASICs. This approach is inadequate for OpenFlow networks because it restricts a certain amount of flexibility for network control that OpenFlow tries to provide. Therefore, we need a control plane protection mechanism in OpenFlow switches as a last resort, while preserving flexibility for network control. In this paper, we propose a mechanism to filter out Packet-In messages, which include packets handled by the control plane in OpenFlow networks, without dropping important ones for network control. Switches record values of packet header fields before sending Packet-In messages, and filter out packets that have the same values as the recorded ones. The controllers set the header fields in advance whose values must be recorded, and the header fields are selected based on controller design. We have implemented and evaluated the proposed mechanism on a prototype software switch, concluding that it dramatically reduces CPU loads on switches while passes important Packet-In messages for network control.

  • STM Study on Adsorption Structures of Cs on the As-Terminated GaAs(001) (2×4) Surface by Alternating Supply of Cs and O2

    Masayuki HIRAO  Daichi YAMANAKA  Takanori YAZAKI  Jun OSAKO  Hokuto IIJIMA  Takao SHIOKAWA  Hikota AKIMOTO  Takashi MEGURO  

     
    PAPER

      Vol:
    E99-C No:3
      Page(s):
    376-380

    Negative electron affinity (NEA) surfaces can be formed by alternating supply of alkali metals (e.g. Cs, Rb, K) and oxygen on semiconductor surfaces. We have studied adsorption structures of Cs on an As-terminated (2×4) (001) GaAs surface using scanning tunneling microscopy (STM). We found that the initial adsorption of Cs atoms occurs around the step sites in the form of Cs clusters and that the size of clusters is reduced by successive exposure to O2, indicating that As-terminated (2×4) surfaces are relatively stable compared to Ga-terminated surfaces and are not broken by the Cs clusters adsorption.

  • Novel Reconfigurable Hardware Accelerator for Protein Sequence Alignment Using Smith-Waterman Algorithm

    Atef IBRAHIM  Hamed ELSIMARY  Abdullah ALJUMAH  

     
    PAPER-Digital Signal Processing

      Vol:
    E99-A No:3
      Page(s):
    683-690

    This paper presents novel reconfigurable semi-systolic array architecture for the Smith-Waterman with an affine gap penalty algorithm to align protein sequences optimized for shorter database sequences. This architecture has been modified to enable hardware reuse rather than replicating processing elements of the semi-systolic array in multiple FPGAs. The proposed hardware architecture and the previously published conventional one are described at the Register Transfer Level (RTL) using VHDL language and implemented using the FPGA technology. The results show that the proposed design has significant higher normalized speedup (up to 125%) over the conventional one for query sequence lengths less than 512 residues. According to the UniProtKB/TrEMBL protein database (release 2015_05) statistics, the largest number of sequences (about 80%) have sequence length less than 512 residues that makes the proposed design outperforms the conventional one in terms of speed and area in this sequence lengths range.

  • Real Cholesky Factor-ADI Method for Low-Rank Solution of Projected Generalized Lyapunov Equations

    Yuichi TANJI  

     
    PAPER-Nonlinear Problems

      Vol:
    E99-A No:3
      Page(s):
    702-709

    The alternating direction implicit (ADI) method is proposed for low-rank solution of projected generalized continuous-time algebraic Lyapunov equations. The low-rank solution is expressed by Cholesky factor that is similar to that of Cholesky factorization for linear system of equations. The Cholesky factor is represented in a real form so that it is useful for balanced truncation of sparsely connected RLC networks. Moreover, we show how to determine the shift parameters which are required for the ADI iterations, where Krylov subspace method is used for finding the shift parameters that reduce the residual error quickly. In the illustrative examples, we confirm that the real Cholesky factor certainly provides low-rank solution of projected generalized continuous-time algebraic Lyapunov equations. Effectiveness of the shift parameters determined by Krylov subspace method is also demonstrated.

  • Characteristic Analysis and Tolerance Analysis of Nonlinear Resistive Circuits Using Integer Programming

    Kiyotaka YAMAMURA  Suguru ISHIGURO  Hiroshi TAKI  

     
    PAPER-Nonlinear Problems

      Vol:
    E99-A No:3
      Page(s):
    710-719

    This paper presents efficient and easily implementable methods for the characteristic analysis and tolerance analysis of nonlinear resistive circuits using integer programming. In these methods, the problem of finding all characteristic curves or all solution sets (regions of possible operating points) is formulated as a mixed integer programming problem, and it is solved by a high-performance integer programming solver such as CPLEX. It is shown that the proposed methods can easily be implemented without making complicated programs, and that all characteristic curves or all solution sets are obtained by solving mixed integer programming problems several times. Numerical examples are given to confirm the effectiveness of the proposed methods.

  • Decoding of Projective Reed-Muller Codes by Dividing a Projective Space into Affine Spaces

    Norihiro NAKASHIMA  Hajime MATSUI  

     
    PAPER-Coding Theory

      Vol:
    E99-A No:3
      Page(s):
    733-741

    A projective Reed-Muller (PRM) code, obtained by modifying a Reed-Muller code with respect to a projective space, is a doubly extended Reed-Solomon code when the dimension of the related projective space is equal to 1. The minimum distance and the dual code of a PRM code are known, and some decoding examples have been presented for low-dimensional projective spaces. In this study, we construct a decoding algorithm for all PRM codes by dividing a projective space into a union of affine spaces. In addition, we determine the computational complexity and the number of correctable errors of our algorithm. Finally, we compare the codeword error rate of our algorithm with that of the minimum distance decoding.

  • Speaker-Independent Speech Emotion Recognition Based Multiple Kernel Learning of Collaborative Representation

    Cheng ZHA  Xinrang ZHANG  Li ZHAO  Ruiyu LIANG  

     
    LETTER-Engineering Acoustics

      Vol:
    E99-A No:3
      Page(s):
    756-759

    We propose a novel multiple kernel learning (MKL) method using a collaborative representation constraint, called CR-MKL, for fusing the emotion information from multi-level features. To this end, the similarity and distinctiveness of multi-level features are learned in the kernels-induced space using the weighting distance measure. Our method achieves better performance than existing methods by using the voiced-level and unvoiced-level features.

  • A Unified Tone Mapping Operation for HDR Images Expressed in Integer Data

    Toshiyuki DOBASHI  Masahiro IWAHASHI  Hitoshi KIYA  

     
    LETTER-Image

      Vol:
    E99-A No:3
      Page(s):
    774-776

    This letter considers a unified tone mapping operation (TMO) for HDR images. The unified TMO can perform tone mapping for various HDR image formats with a single common operation. The integer TMO which can realize unified tone mapping by converting an input HDR image into an intermediate format is proposed. This method can be executed efficiently with low memory and low performance processor. However, only floating-point HDR image formats have been considered in the method. In other words, a long-integer which is one of the HDR image formats has not been considered in the method. This letter applies the method to a long-integer format, and confirm its performance. The experimental results show the proposed method is effective for an integer format in terms of the resources such as the computational cost and the memory cost.

  • Performance Evaluation on GA-Based Localization for Wireless Capsule Endoscope Using Scattered Electric Fields

    Taiki IIDA  Daisuke ANZAI  Jianqing WANG  

     
    PAPER

      Vol:
    E99-B No:3
      Page(s):
    578-585

    To improve the performance of capsule endoscope, it is important to add location information to the image data obtained by the capsule endoscope. There is a disadvantage that a lot of existing localization techniques require to measure channel model parameters in advance. To avoid such a troublesome pre-measurement, this paper pays attention to capsule endoscope localization based on an electromagnetic imaging technology which can estimate not only the location but also the internal structure of a human body. However, the electromagnetic imaging with high resolution has huge computational complexity, which should prevent us from carrying out real-time localization. To ensure the accurate real-time localization system without pre-measured model parameters, we apply genetic algorithm (GA) into the electromagnetic imaging-based localization method. Furthermore, we evaluate the proposed GA-based method in terms of the simulation time and the location estimation accuracy compared to the conventional methods. In addition, we show that the proposed GA-based method can perform more accurately than the other conventional methods, and also, much less computational complexity of the proposed method can be accomplished than a greedy algorithm-based method.

  • Human Motion Classification Using Radio Signal Strength in WBAN

    Sukhumarn ARCHASANTISUK  Takahiro AOYAGI  Tero UUSITUPA  Minseok KIM  Jun-ichi TAKADA  

     
    PAPER

      Vol:
    E99-B No:3
      Page(s):
    592-601

    In this paper, a novel approach of a human motion classification system in wireless body area network (WBAN) using received radio signal strength was developed. This method enables us to classify human motions in WBAN using only the radio signal strength during communication without additional tools such as an accelerometer. The proposed human motion classification system has a potential to be used for improving communication quality in WBAN as well as recording daily-life activities for self-awareness tool. To construct the classification system, a numerical simulation was used to generate WBAN propagation channel in various motions at frequency band of 403.5MHz and 2.45GHz. In the classification system, a feature vector representing a characteristic of human motions was computed from time-series received signal levels. The proposed human motion classification using the radio signal strength based on WBAN simulation can classify 3-5 human motions with the accuracy rate of 63.8-95.7 percent, and it can classify the human motions regardless of frequency band. In order to confirm that the human motion classification using radio signal strength can be used in practice, the applicability of the classification system was evaluated by WBAN measurement data.

  • Fan-Out Devices Suppressed Mode Field Diameter Change for Multi-Core Fibers

    Masatoshi TANAKA  Masayoshi HACHIWAKA  Hirokazu TANIGUCHI  

     
    PAPER-Optical Fiber for Communications

      Vol:
    E99-B No:3
      Page(s):
    622-629

    Fan-in/fan-out devices are necessary for the construction of multi-core fiber communication systems. A fan-out device using a capillary is proposed and made by connecting a tapered fiber bundle and a multi-core fiber. The tapered fiber bundle is elongated so that the core arrangement and the mode field diameter (MFD) of single-core fibers agree with those of the multi-core fiber. Suppressing the MFD change is necessary to reduce the coupling loss of the fan-out device. While elongating the fiber bundle, the MFD decreases at the beginning until the core reaches a certain core diameter, and then it begins to increase. We suppress the MFD change of the fan-out device by using this phenomenon. The average insertion loss at both ends of a multi-core fiber was approximately 1.6dB when the fabricated fan-in/fan-out devices were connected to the multi-core fiber.

  • Efficient Geometric Routing in Large-Scale Complex Networks with Low-Cost Node Design

    Sahel SAHHAF  Wouter TAVERNIER  Didier COLLE  Mario PICKAVET  Piet DEMEESTER  

     
    PAPER-Network

      Vol:
    E99-B No:3
      Page(s):
    666-674

    The growth of the size of the routing tables limits the scalability of the conventional IP routing. As scalable routing schemes for large-scale networks are highly demanded, this paper proposes and evaluates an efficient geometric routing scheme and related low-cost node design applicable to large-scale networks. The approach guarantees that greedy forwarding on derived coordinates will result in successful packet delivery to every destination in the network by relying on coordinates deduced from a spanning tree of the network. The efficiency of the proposed scheme is measured in terms of routing quality (stretch) and size of the coordinates. The cost of the proposed router is quantified in terms of area complexity of the hardware design and all the evaluations involve comparison with a state-of-the-art approach with virtual coordinates in the hyperbolic plane. Extensive simulations assess the proposal in large topologies consisting of up to 100K nodes. Experiments show that the scheme has stretch properties comparable to geometric routing in the hyperbolic plane, while enabling a more efficient hardware design, and scaling considerably better in terms of storage requirements for coordinate representation. These attractive properties make the scheme promising for routing in large networks.

  • Connector Model for Use in Common-Mode Antenna Model Used to Estimate Radiation from Printed Circuit Boards with Board-to-Board Connector

    Yuri WAKADUKI  Tetsushi WATANABE  Yoshitaka TOYOTA  Kengo IOKIBE  Liuji R. KOGA  Osami WADA  

     
    PAPER-Electromagnetic Compatibility(EMC)

      Vol:
    E99-B No:3
      Page(s):
    695-702

    A connector model expressed as an inductance is proposed for use in a previously reported common-mode antenna model. The common-mode antenna model is an equivalent model for estimating only common-mode radiation from a printed circuit board (PCB) more quickly and with less computational resources than a calculation method that fully divides the entire structure of the PCB into elemental cells, such as narrow signal traces and thin dielectric layers. Although the common-mode antenna model can estimate the amount of radiation on the basis of the pin configuration of the connector between two PCBs, the calculation results do not show the peak frequency shift in the radiation spectrum when there is a change in the pin configuration. A previous study suggested that the frequency shift depends on the total inductance of the connector, which led to the development of the connector model reported here, which takes into account the effective inductance of the connector. The common-mode antenna model with the developed connector model accurately simulates the peak frequency shift caused by a change in the connector pin configuration. The results agree well with measured spectra (error of 3 dB).

7741-7760hit(42807hit)