The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] (42807hit)

7781-7800hit(42807hit)

  • Combining Multiple Acoustic Models in GMM Spaces for Robust Speech Recognition

    Byung Ok KANG  Oh-Wook KWON  

     
    PAPER-Speech and Hearing

      Pubricized:
    2015/11/24
      Vol:
    E99-D No:3
      Page(s):
    724-730

    We propose a new method to combine multiple acoustic models in Gaussian mixture model (GMM) spaces for robust speech recognition. Even though large vocabulary continuous speech recognition (LVCSR) systems are recently widespread, they often make egregious recognition errors resulting from unavoidable mismatch of speaking styles or environments between the training and real conditions. To handle this problem, a multi-style training approach has been used conventionally to train a large acoustic model by using a large speech database with various kinds of speaking styles and environment noise. But, in this work, we combine multiple sub-models trained for different speaking styles or environment noise into a large acoustic model by maximizing the log-likelihood of the sub-model states sharing the same phonetic context and position. Then the combined acoustic model is used in a new target system, which is robust to variation in speaking style and diverse environment noise. Experimental results show that the proposed method significantly outperforms the conventional methods in two tasks: Non-native English speech recognition for second-language learning systems and noise-robust point-of-interest (POI) recognition for car navigation systems.

  • Interference Cancellation for Intra and Inter UWB Systems Using Modified Hermite Polynomials Based Orthogonal Matched Filter

    Takumi KOBAYASHI  Chika SUGIMOTO  Ryuji KOHNO  

     
    PAPER

      Vol:
    E99-B No:3
      Page(s):
    569-577

    Ultra-wideband (UWB) communications is used for medical information communication technology (MICT) as a dependable and safe communication technology in recent years. On the other hand, there are existing various UWB systems that are not used for MICT. Generally, these UWB systems use almost the same frequency band. Therefore, they interfere to each other in general transmission channel environment. In our previous work, a novel UWB pulse shape modulation using modified Hermite pulse is proposed as a multiple user access scheme. In this paper, we propose a mitigation method for inter-user interference and inter-system interference using combination of orthogonal pulse shape modulation and orthogonal matched filter (OMF) detector. The purposes of our system are to detect all signals of users in the same UWB system and to reduce the unknown interference from other UWB systems at the same time. This paper provides performance evaluation results based on both of analytical and numerical evaluation. Simulation results show that the proposed system can detect the signals that were transmitted from the same UWB system using orthogonal pulse set, while the proposed system can reduce the interference from unknown UWB systems at the same time. The theoretical analysis is expected that noise tolerance of our proposal will be deteriorated in the additive Gaussian noise channel in comparison with the conventional matched filter. It is confirmed that the numerical evaluation illustrates such noise tolerance equivalent to the theoretical analysis result.

  • A Novel Resonator Design for Q Factor Improvement Using Tightly-Coupled Parallel Coils in Coupled Magnetic Resonance Wireless Power Transfer

    Cheng YANG  Koichi TSUNEKAWA  

     
    PAPER-Antennas and Propagation

      Vol:
    E99-B No:3
      Page(s):
    685-694

    This study proposes a novel resonator design that uses tightly coupled parallel coils to improve the quality factor (Q factor) in coupled magnetic resonance wireless power transfer. Depending on the characteristics of the tightly coupled parallel-connected coils, the proposed resonator can offer significantly reduced resistance with very little self-inductance loss. A double-layer spiral coil structure is used for resonator design and evaluating its characteristics. Measured results show that a resonator consisting of two identical, tightly coupled parallel double-layer spiral coils can match the Q factor of a conventional double-layer spiral coil with the same number of turns, even though its equivalent resistance is approximately 75% less. Moreover, the system power transfer performance of the resonator was measured under the impedance matching condition. To further reduce the resistance, we propose another resonator comprising of three parallel and tightly coupled double-layer spiral coils, and measure its equivalent resistance characteristics for different wire gap sizes.

  • 6-Year of Broadband Performance in Korea: A View from the User's Experience

    Yeonhee LEE  Youngseok LEE  

     
    PAPER-Optical Fiber for Communications

      Vol:
    E99-B No:3
      Page(s):
    630-646

    The widespread use and increasing popularity of broadband service has prompted a focus on the measurement and analysis of its empirical performance in recent studies. The worldwide view of broadband performance has been examined over the short term with Speedtest.net, but research in this area has not yet provided a long-term evolutionary insight on how DSL, Cable, and Fiber access technologies have influenced on user experience. In this study, we present 6 years of measurement results, from 2006 to 2011, of broadband performance with fast developing broadband networks in Korea. With 57% Fiber penetration in 2011, our data consist of a total of 29M test records and 10M subscribers. Over the 6 years, we have observed a 2.9-fold improvement in download speed (57Mbps), 2.8-fold increase in upload speed (38Mbps), and 0.7-fold decrease in latency due to the high penetration rate of Fiber broadband service and the advanced Cable modem technology. In addition, we carried out longitudinal analysis of various aspects of services, providers, regions, and cost-performance. We believe that the evolutionary Korean broadband measurement results can shed light on how high-speed access technologies are substantially enhancing on end-to-end performance.

  • On the Outage Performance of Decode-and-Forward Opportunistic Mobile Relaying with Direct Link

    Hui TIAN  Kui XU  Youyun XU  Xiaochen XIA  

     
    PAPER-Network

      Vol:
    E99-B No:3
      Page(s):
    654-665

    In this paper, we investigate the effect of outdated channel state information (CSI) on decode-and-forward opportunistic mobile relaying networks with direct link (DL) between source node and destination node. Relay selection schemes with different levels of CSI are considered: 1) only outdated CSI is available during the relay selection procedure; 2) not only outdated CSI but also second-order statistics information are available in relay selection process. Three relay selection schemes are proposed based on the two levels of outdated CSI. Closed-form expressions of the outage probability are derived for the proposed relay selection schemes. Meanwhile, the asymptotic behavior and the achievable diversity of three relay selection schemes are analyzed. Finally, simulation results are presented to verify our analytical results.

  • Two-Way Cognitive DF Relaying in WSNs with Practical RF Energy Harvesting Node

    Dang Khoa NGUYEN  Hiroshi OCHI  

     
    PAPER-Network

      Vol:
    E99-B No:3
      Page(s):
    675-684

    This work presents the exact outage performance and throughput of two-way cognitive decode-and-forward relaying wireless sensor networks with realistic transceiver relay. The relay is a self-powered wireless node that harvests radio frequency energy from the transmitted signals. We consider four configurations of a network with formed by combining two bidirectional relaying protocols (multiple access broadcast protocol and time division broadcast protocol), and two power transfer policies (dual-source energy transfer and single-fixed-source energy transfer). Based on our analysis, we provide practical insights into the impact of transceiver hardware impairments on the network performance, such as the fundamental capacity ceiling of the network with various configurations that cannot be exceeded by increasing transmit power given a fixed transmission rate and the transceiver selection strategy for the network nodes that can optimize the implementation cost and performance tradeoff.

  • Power Allocation for Secondary Users in Relay Assisted Multi-Band Underlay Cognitive Radio Network

    Wenhao JIANG  Wenjiang FENG  Shaoxiang GU  Yuxiang LIU  Zhiming WANG  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E99-B No:3
      Page(s):
    714-722

    In this paper, we study the power allocation problem in a relay assisted multi-band underlay cognitive radio network. Such a network allows unlicensed users (secondary users) to access the spectrum bands under a transmission power constraint. Due to the concave increasing property of logarithm function, it is not always wise for secondary users to expend all the transmission power in one band if their aim is to maximize achievable data rate. In particular, we study a scenario where two secondary users and a half-duplexing relay exist with two available bands. The two users choose different bands for direct data transmission and use the other band for relay transmission. By properly allocating the power on two bands, each user may be able to increase its total achievable data rate while satisfying the power constraint. We formulate the power allocation problem as a non-cooperative game and investigate its Nash equilibria. We prove the power allocation game is a supermodular game and that Nash equilibria exist. We further find the best response function of users and propose a best response update algorithm to solve the corresponding dynamic game. Numerical results show the overall performance in terms of achievable rates is improved through our proposed transmission scheme and power allocation algorithm. Our proposed algorithm also shows satisfactory performance in terms of convergence speed.

  • Time Performance Optimization and Resource Conflicts Resolution for Multiple Project Management

    Cong LIU  Jiujun CHENG  Yirui WANG  Shangce GAO  

     
    PAPER-Software Engineering

      Pubricized:
    2015/12/04
      Vol:
    E99-D No:3
      Page(s):
    650-660

    Time performance optimization and resource conflict resolution are two important challenges in multiple project management contexts. Compared with traditional project management, multi-project management usually suffers limited and insufficient resources, and a tight and urgent deadline to finish all concurrent projects. In this case, time performance optimization of the global project management is badly needed. To our best knowledge, existing work seldom pays attention to the formal modeling and analyzing of multi-project management in an effort to eliminate resource conflicts and optimizing the project execution time. This work proposes such a method based on PRT-Net, which is a Petri net-based formulism tailored for a kind of project constrained by resource and time. The detailed modeling approaches based on PRT-Net are first presented. Then, resource conflict detection method with corresponding algorithm is proposed. Next, the priority criteria including a key-activity priority strategy and a waiting-short priority strategy are presented to resolve resource conflicts. Finally, we show how to construct a conflict-free PRT-Net by designing resource conflict resolution controllers. By experiments, we prove that our proposed priority strategy can ensure the execution time of global multiple projects much shorter than those without using any strategies.

  • The Structural Vulnerability Analysis of Power Grids Based on Overall Information Centrality

    Yi-Jia ZHANG  Zhong-Jian KANG  Xin-Ling GUO  Zhe-Ming LU  

     
    LETTER-Artificial Intelligence, Data Mining

      Pubricized:
    2015/12/11
      Vol:
    E99-D No:3
      Page(s):
    769-772

    The power grid defines one of the most important technological networks of our times and has been widely studied as a kind of complex network. It has been developed for more than one century and becomes an extremely huge and seemingly robust system. But it becomes extremely fragile as well because some unexpected minimal failures may lead to sudden and massive blackouts. Many works have been carried out to investigate the structural vulnerability of power grids from the topological point of view based on the complex network theory. This Letter focuses on the structural vulnerability of the power grid under the effect of selective node removal. We propose a new kind of node centrality called overall information centrality (OIC) to guide the node removal attack. We test the effectiveness of our centrality in guiding the node removal based on several IEEE power grids. Simulation results show that, compared with other node centralities such as degree centrality (DC), betweenness centrality (BC) and closeness centrality (CC), our OIC is more effective to guide the node removal and can destroy the power grid in less steps.

  • Competitive Analysis for the Flat-Rate Problem

    Hiroshi FUJIWARA  Atsushi MATSUDA  Toshihiro FUJITO  

     
    PAPER

      Pubricized:
    2015/12/16
      Vol:
    E99-D No:3
      Page(s):
    559-566

    We consider a problem of the choice of price plans offered by a telecommunications company: a “pay-as-you-go” plan and a “flat-rate” plan. This problem is formulated as an online optimization problem extending the ski-rental problem, and analyzed using the competitive ratio. We give a lemma for easily calculating the competitive ratio. Based on the lemma, we derive a family of optimal strategies for a realistic class of instances.

  • Color-Enriched Gradient Similarity for Retouched Image Quality Evaluation

    Leida LI  Yu ZHOU  Jinjian WU  Jiansheng QIAN  Beijing CHEN  

     
    LETTER-Image Processing and Video Processing

      Pubricized:
    2015/12/09
      Vol:
    E99-D No:3
      Page(s):
    773-776

    Image retouching is fundamental in photography, which is widely used to improve the perceptual quality of a low-quality image. Traditional image quality metrics are designed for degraded images, so they are limited in evaluating the quality of retouched images. This letter presents a RETouched Image QUality Evaluation (RETIQUE) algorithm by measuring structure and color changes between the original and retouched images. Structure changes are measured by gradient similarity. Color colorfulness and saturation are utilized to measure color changes. The overall quality score of a retouched image is computed as the linear combination of gradient similarity and color similarity. The performance of RETIQUE is evaluated on a public Digitally Retouched Image Quality (DRIQ) database. Experimental results demonstrate that the proposed metric outperforms the state-of-the-arts.

  • Visibility Problems for Manhattan Towers

    Chuzo IWAMOTO  Yusuke KITAGAKI  

     
    PAPER

      Pubricized:
    2015/12/16
      Vol:
    E99-D No:3
      Page(s):
    607-614

    A Manhattan tower is a monotone orthogonal polyhedron lying in the halfspace z ≥ 0 such that (i) its intersection with the xy-plane is a simply connected orthogonal polygon, and (ii) the horizontal cross section at higher levels is nested in that for lower levels. Here, a monotone polyhedron meets each vertical line in a single segment or not at all. We study the computational complexity of finding the minimum number of guards which can observe the side and upper surfaces of a Manhattan tower. It is shown that the vertex-guarding, edge-guarding, and face-guarding problems for Manhattan towers are NP-hard.

  • Structure Transformation of Bended Diamond-Like Carbon Free-Space Nanowiring by Ga Focused-Ion-Beam Irradiation

    Ken-ichiro NAKAMATSU  Shinji MATSUI  

     
    PAPER

      Vol:
    E99-C No:3
      Page(s):
    365-370

    We observed Ga focused-ion-beam (FIB) irradiation effect onto diamond-like carbon (DLC) free-space nanowiring (FSW) fabricated by focused-ion-beam chemical vapor deposition (FIB-CVD). A bended FIB-CVD FSW completely strained after Ga-FIB irradiation with raster scanning. This is probably caused by generation of compression stresses onto the surface of FSW, because the surface state of the nanowire changed with Ga-FIB irradiation. Transmission electron microscope (TEM) study indicates that Ga of FSW core part disappeared after Ga-FIB irradiation and a near-edge X-ray absorption fine structure (NEXAFS) analysis revealed C-Ga bond formation onto the surface. This is attributed to a movement of Ga from the core region to the surface, and/or an adsorption of Ga onto the surface by Ga-FIB scanned irradiation. The transformation of FSW is not only fascinating as physical phenomenon, but also effective for fabricating various 3-dimensional nanodevices equipped with nanowires utilized as electric wiring.

  • Electrically Driven Near-Infrared Broadband Light Source with Gaussian-Like Spectral Shape Based on Multiple InAs Quantum Dots

    Takuma YASUDA  Nobuhiko OZAKI  Hiroshi SHIBATA  Shunsuke OHKOUCHI  Naoki IKEDA  Hirotaka OHSATO  Eiichiro WATANABE  Yoshimasa SUGIMOTO  Richard A. HOGG  

     
    BRIEF PAPER

      Vol:
    E99-C No:3
      Page(s):
    381-384

    We developed an electrically driven near-infrared broadband light source based on self-assembled InAs quantum dots (QDs). By combining emissions from four InAs QD ensembles with controlled emission center wavelengths, electro-luminescence (EL) with a Gaussian-like spectral shape and approximately 85-nm bandwidth was obtained. The peak wavelength of the EL was blue-shifted from approximately 1230 to 1200 nm with increased injection current density (J). This was due to the state-filling effect: sequential filling of the discrete QD electron/hole states by supplied carriers from lower (ground state; GS) to higher (excited state; ES) energy states. The EL intensities of the ES and GS emissions exhibited different J dependence, also because of the state-filling effect. The point-spread function (PSF) deduced from the Fourier-transformed EL spectrum exhibited a peak without apparent side lobes. The half width at half maximum of the PSF was 6.5 µm, which corresponds to the estimated axial resolution of the optical coherence tomography (OCT) image obtained with this light source. These results demonstrate the effectiveness of the QD-based device for realizing noise-reduced high-resolution OCT.

  • Effective Data Collection Scheme by Mobile Agent over Wireless Sensor Network

    Takaaki SUETSUGU  Takayuki TORIKAI  Hiroshi FURUKAWA  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Vol:
    E99-B No:3
      Page(s):
    749-757

    In tree-based wireless sensor networks (WSNs), multihop sensor nodes require a longer time frame to send sensed data to a sink node as the number of hops increases. The time taken for delivery of sensed data becomes a critical issue when a large WSN is deployed. This paper proposes a new data collection scheme with rapid data delivery that utilizes the so-called mobile agent technique. The proposed scheme achieves high data collection efficiency while not relying on route optimization unlike conventional data collection techniques. Simulation results show that the larger the size or the maximum hops of the network, the more effective the proposed scheme becomes. Effectiveness of the proposed scheme is also confirmed through field experiments with actual sensor devices.

  • Determinacy and Subsumption of Single-Valued Bottom-Up Tree Transducers

    Kenji HASHIMOTO  Ryuta SAWADA  Yasunori ISHIHARA  Hiroyuki SEKI  Toru FUJIWARA  

     
    PAPER

      Pubricized:
    2015/12/16
      Vol:
    E99-D No:3
      Page(s):
    575-587

    This paper discusses the decidability of determinacy and subsumption of tree transducers. For two tree transducers T1 and T2, T1 determines T2 if the output of T2 can be identified by the output of T1, that is, there is a partial function f such that [[T2]]=f∘[[T1]] where [[T1]] and [[T2]] are tree transformation relations induced by T1 and T2, respectively. Also, T1 subsumes T2 if T1 determines T2 and the partial function f such that [[T2]]=f∘[[T1]] can be defined by a transducer in a designated class that T2 belongs to. In this paper, we show that determinacy is in coNEXPTIME for single-valued linear extended bottom-up tree transducers as the determiner class and single-valued bottom-up tree transducers as the determinee class. We also show that subsumption is in coNEXPITME for these classes, and a bottom-up tree transducer T3 such that [[T2]]=[[T3]]∘[[T1]] can be constructed if T1 subsumes T2.

  • A New State-Based Connectivity Model for Peer-to-Peer Networks

    Halil ARSLAN  Sinan TÜNCEL  

     
    PAPER-Information Network

      Pubricized:
    2015/11/24
      Vol:
    E99-D No:3
      Page(s):
    688-694

    The usage of peer-to-peer (P2P) networks that provide sharing of real-time environmental data by internet users is becoming more and more popular. As a result, it's necessary to identify the problems during P2P communication and to develop proper solutions. One of the major problems of P2P communication is that it's not possible to reach the clients behind devices that create private networks like network address translation (NAT) and firewalls from the public network. Among the solutions proposed for this problem, Interactive Connectivity Establishment (ICE) and Real Time Media Flow Protocol (RTMFP) are the methods most preferred in the literature. These methods seem more attractive than other NAT traversal mechanisms since they are independent from internet infrastructure and are also appropriate for dynamic structures. However, they do have some disadvantages. In this study, a new state-based end-to-end communication technique (SBN) for NAT traversal was designed and realized. The performance of the designed method was evaluated against three criteria, connectivity check delay, connection packet count and bandwidth, and compared with the ICE method. The results revealed that the suggested SBN method proved an average of 78% success in connectivity check delay, 69% in the number of packets used and 66% in the consumption of bandwidth over the ICE method.

  • Multi-Layer Perceptron with Pulse Glial Chain

    Chihiro IKUTA  Yoko UWATE  Yoshifumi NISHIO  Guoan YANG  

     
    PAPER-Neural Networks and Bioengineering

      Vol:
    E99-A No:3
      Page(s):
    742-755

    Glial cells include several types of cells such as astrocytes, and oligodendrocytes apart from the neurons in the brain. In particular, astrocytes are known to be important in higher brain function and are therefore sometimes simply called glial cells. An astrocyte can transmit signals to other astrocytes and neurons using ion concentrations. Thus, we expect that the functions of an astrocyte can be applied to an artificial neural network. In this study, we propose a multi-layer perceptron (MLP) with a pulse glial chain. The proposed MLP contains glia (astrocytes) in a hidden layer. The glia are connected to neurons and are excited by the outputs of the neurons. The excited glia generate pulses that affect the excitation thresholds of the neurons and their neighboring glia. The glial network provides a type of positional relationship between the neurons in the hidden layer, which can enhance the performance of MLP learning. We confirm through computer simulations that the proposed MLP has better learning performance than a conventional MLP.

  • Cooperative Local Repair with Multiple Erasure Tolerance

    Jiyong LU  Xuan GUANG  Linzhi SHEN  Fang-Wei FU  

     
    LETTER-Coding Theory

      Vol:
    E99-A No:3
      Page(s):
    765-769

    In distributed storage systems, codes with lower repair locality are much more desirable due to their superiority in reducing the disk I/O complexity of each repair process. Motivated partially by both codes with information (r,δ1)c locality and codes with cooperative (r,l) locality, we propose the concept of codes with information (r,l,δ) locality in this paper. For a linear code C with information (r,l,δ) locality, values at arbitrary l information coordinates of an information set I can be recovered by connecting any of δ existing pairwise disjoint local repair sets with size no more than r, where a local repair set of l coordinates is defined as the set of some other coordinates by which one can recover the values at these l coordinates. We derive a lower bound on the codeword length n for [n,k,d] linear codes with information (r,l,δ) locality. Furthermore, we indicate its tightness for some special cases. Particularly, some existing results can be deduced from our bound by restriction on parameters.

  • Uniformly Random Generation of Floorplans

    Katsuhisa YAMANAKA  Shin-ichi NAKANO  

     
    PAPER

      Pubricized:
    2015/12/16
      Vol:
    E99-D No:3
      Page(s):
    624-629

    In this paper, we consider the problem of generating uniformly random mosaic floorplans. We propose a polynomial-time algorithm that generates such floorplans with f faces. Two modified algorithms are created to meet additional criteria.

7781-7800hit(42807hit)