The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Ada(1871hit)

1521-1540hit(1871hit)

  • Wavelet-Based Broadband Beamformers with Dynamic Subband Selection

    Yung-Yi WANG  Wen-Hsien FANG  

     
    PAPER-Antenna and Propagation

      Vol:
    E83-B No:4
      Page(s):
    819-826

    In this paper, we present a new approach for the design of partially adaptive broadband beamformers with the generalized sidelobe canceller (GSC) as an underlying structure. The approach designs the blocking matrix involved by utilizing a set of P-regular, M-band wavelet filters, whose vanishing moment property is shown to meet the requirement of a blocking matrix in the GSC structure. Furthermore, basing on the subband decomposition property of these wavelet filters, we introduce a new dynamic subband selection scheme succeeding the blocking matrix. The scheme only retains the principal subband components of the blocking matrix outputs based on a prescribed statistical hypothesis test and thus further reduces the dimension of weights in adaptive processing. As such, the overall computational complexity, which is mainly dictated by the dimension of adaptive weights, is substantially reduced. The furnished simulations show that this new approach offers comparable performance as the existing fully adaptive beamformers but with reduced computations.

  • Transform Domain Adaptive Filtering Algorithm via Modified Power Estimator

    Dai I. KIM  Philippe De WILDE  

     
    LETTER-Digital Signal Processing

      Vol:
    E83-A No:4
      Page(s):
    764-770

    This letter analyses the convergence behaviour of the transform domain least mean square (TDLMS) adaptive filtering algorithm which is based on a well known interpretation of the variable stepsize algorithm. With this interpretation, the analysis is considerably simplified. The time varying stepsize is implemented by the modified power estimator to redistribute the spread power after transformation. The main contribution of this letter is the statistical performance analysis in terms of mean and mean squared error of the weight error vector and the decorrelation property of the TDLMS is presented by the lower and upper bound of eigenvalue spread ratio. The theoretical analysis results are validated by Monte Carlo simulation.

  • An Intelligent Image Interpolation Using Cubic Hermite Method

    Heesang KIM  Hanseok KO  

     
    PAPER-Image Processing, Image Pattern Recognition

      Vol:
    E83-D No:4
      Page(s):
    914-921

    This paper proposes an intelligent image interpolation method based on Cubic Hermite procedure for improving digital images. Image interpolation has been used to create high-resolution effects in digitized image data, providing sharpness in high frequency image data and smoothness in low frequency image data. Most interpolation techniques proposed in the past are centered on determining pixel values using the relationship between neighboring points. As one of the more prevalent interpolation techniques, Cubic Hermite procedure attains the interpolation with a 3rd order polynomial fit using derivatives of points and adaptive smoothness parameters. Cubic Hermite features many forms of a curved shape, which effectively reduce the problems inherent in interpolations. This paper focuses on a method that intelligently determines the derivatives and adaptive smoothness parameters to effectively contain the interpolation error, achieving significantly improved images. Derivatives are determined by taking a weighted sum of the neighboring points whose weighting function decreases as the intensity difference of neighboring points increases. Smoothness parameter is obtained by training an exemplar image to fit into the Cubic Hermite function such that the interpolation error is minimized at each interpolating point. The simulations indicate that the proposed method achieves improved image results over that of conventional methods in terms of error and image quality performance.

  • Flexible Fiber Faraday Effect Current Sensor Using Flint Glass Fiber and Reflection Scheme

    Kiyoshi KUROSAWA  Kazunori YAMASHITA  Tomohiro SOWA  Yasuhisa YAMADA  

     
    PAPER-Sensors for Electromagnetic Phenomena

      Vol:
    E83-C No:3
      Page(s):
    326-330

    In this paper, design and experimental results are described about a newly developed highly flexible fiber Faraday effect current sensor using the flint glass fiber as the sensor element. In the new type, a mirror is coated at an end of the flint glass fiber, and light takes round trip transmission in it. By the round trip transmission, the effect of rotation of polarization plane due to the torsion of the fiber is automatically canceled. Because of the low photo-elastic constant of the flint glass fiber, and the automatic canceling of the rotation, the polarization state of light passed through the fiber is stable. Therefore, in the new reflection type, it is not necessary to support the flint glass fiber with a durable circular frame to maintain accuracy. And so, the sensor head is small, light, and can be easily installed to existing power apparatus by winding the flint glass fiber around the current conductor without pulling out or cutting it. Experiments were done to verify the stable characteristics using the developed sensor model. In the experiments, relation between the final output signal of the sensor and shape of the curve of the flint glass fiber were examined. From the experiments, it became clear that the final output is almost perfectly independent on shape of the curve of the fiber. It was also confirmed that accuracy of the sensor conform to the standard of conventional current transducers for protection of power systems in Japan.

  • Diluted Magnetic Semiconductor Probe for Magnetic Field Sensing Using Improved Common-Mode Noise Reduction Scheme

    Radu G. CUCU  Adrian Gh. PODOLEANU  David A. JACKSON  

     
    PAPER-Sensors for Electromagnetic Phenomena

      Vol:
    E83-C No:3
      Page(s):
    336-341

    An optical magnetic field measuring system using diluted magnetic semiconductors (DMS) probes is presented. The attractive features of DMS for building current/ magnetic field sensors are outlined. The system configuration includes a common-mode noise rejection scheme (CMR) to eliminate optic intensity noise induced in the fibre links by environmental vibrations. The CMR scheme relies on a pulse delay method based on the creation of two relatively delayed replicas of the photodetector output signal and their subsequent subtraction (division). Theoretical and experimental analyses of the system operation are developed and noise rejection methods using subtraction and division are presented and compared. Although CMR by division seems to be more appealing from the theoretical viewpoint (due to the rejection of intensity noise caused both by environmental vibrations and laser source output power fluctuations), in practical terms the subtraction is more reliable and easier to implement. The noise rejection figure measured experimentally is about 17 dBV for CMR both by subtraction and by division. A system calibration curve is presented. The minimum magnetic flux density detected with the system is 0.06 mT rms.

  • Polarimetric Current Sensor Using an In-Line Faraday Rotator

    Fabien BRIFFOD  Luc THEVENAZ  Pierre-Alain NICATI  Alain KUNG  Philippe A. ROBERT  

     
    PAPER-Sensors for Electromagnetic Phenomena

      Vol:
    E83-C No:3
      Page(s):
    331-335

    A novel polarimetric fiber optics current sensor configuration using an in-line 22.5 degree Faraday rotator is proposed on this paper. The introduction of the 22.5 degree Faraday rotator allows to obtain a sensor configuration that does not require adjustment on most optical elements, resulting in an accuracy immune to manufacturing issues. Two prototypes are presented in this paper that are designed to measure AC current, yielding in an excellent accuracy over more than 3 decades.

  • Wavelet Image Coding with Context-Based Zerotree Quantization Framework

    Kai YANG  Hiroyuki KUDO  Tsuneo SAITO  

     
    PAPER-Image Processing, Image Pattern Recognition

      Vol:
    E83-D No:2
      Page(s):
    211-222

    We introduce a new wavelet image coding framework using context-based zerotree quantization, where an unique and efficient method for optimization of zerotree quantization is proposed. Because of the localization properties of wavelets, when a wavelet coefficient is to be quantized, the best quantizer is expected to be designed to match the statistics of the wavelet coefficients in its neighborhood, that is, the quantizer should be adaptive both in space and frequency domain. Previous image coders tended to design quantizers in a band or a class level, which limited their performances as it is difficult for the localization properties of wavelets to be exploited. Contrasting with previous coders, we propose to trace the localization properties with the combination of the tree-structured wavelet representations and adaptive models which are spatial-varying according to the local statistics. In the paper, we describe the proposed coding algorithm, where the spatial-varying models are estimated from the quantized causal neighborhoods and the zerotree pruning is based on the Lagrangian cost that can be evaluated from the statistics nearby the tree. In this way, optimization of zerotree quantization is no longer a joint optimization problem as in SFQ. Simulation results demonstrate that the coding performance is competitive, and sometimes is superior to the best results of zerotree-based coding reported in SFQ.

  • A Bit-Operation Algorithm of the Median-Cut Quantization and Its Hardware Architecture

    Shogo MURAMATSU  Hitoshi KIYA  Akihiko YAMADA  

     
    PAPER

      Vol:
    E83-A No:2
      Page(s):
    320-328

    In this paper, an algorithm of the median-cut quantization (MCQ) is proposed. MCQ is the technique that reduces multi-valued samples to binary-valued ones by adaptively taking the median value as the threshold. In this work, the search process of the median value is derived from the quick-sort algorithm. The proposed algorithm searches the median value bit by bit, and samples are quantized during the search process. Firstly, the bit-serial procedure is shown, and then it is modified to the bit-parallel procedure. The extension to the multi-level quantization is also discussed. Since the proposed algorithm is based on bit operations, it is suitable for hardware implementation. Thus, its hardware architecture is also proposed. To verify the significance, for the application to the motion estimation, the performance is estimated from the synthesis result of the VHDL model.

  • Optimum Tilt Angles in Two Dimensional Phased Array Radar Systems

    Min Joon LEE  Iickho SONG  Jooshik LEE  Yong Up LEE  

     
    LETTER-Electronic and Radio Applications

      Vol:
    E83-B No:2
      Page(s):
    422-424

    In phased array antennas, the number of radiator rows is one of the important factors to minimizing both cost and weight. Therefore, the antenna tilt angles having relation with the element spacing are among the important design parameters. In this paper, the optimum tilt angles for several types of dipole planar arrays are investigated theoretically. To obtain optimum tilt angles, the directivity equation including phase shift factors for planar arrays are calculated.

  • Adaptive Stride Prefetching for the Secondary Data Cache of UMA and NUMA

    Ando KI  

     
    PAPER-Computer Systems

      Vol:
    E83-D No:2
      Page(s):
    168-176

    Prefetching is a promising approach to tackle the memory latency problem. Two basic variants of hardware data prefetching methods are sequential prefetching and stride prefetching. The latter based on stride calculation of future references has the potential to out-perform the former which is based on the data locality. In this paper, a typical stride prefetching and its improved version, adaptive stride prefetching, are compared in quantitative way using simulation for some parallel benchmark programs in the context of uniform memory access and non-uniform memory access architectures. The simulation results show that adaptability of stride is essential since the proposed adaptive scheme can reduce pending stall time which is large in the typical scheme.

  • Maximal-Ratio-Combining Array Beamformer Assisted by a Training Sequence for Space Division Multiple Access in Power-Limited Channels

    Ryu MIURA  Masayuki OODO  Ami KANAZAWA  Yoshinari KOYAMA  

     
    PAPER-Antennas and Propagation

      Vol:
    E83-B No:2
      Page(s):
    394-405

    This paper describes a nonblind digital beamformer for SDMA (space division multiple access) systems used when channels are power-limited. An array antenna with many elements is usually required to obtain high antenna gain for the reception of a low-level desired signal and the degree of freedom for the spatial discrimination of many users using the same frequency. The proposed beamformer is designed for such array antennas by employing the combination of a multibeam former and a maximal-ratio-combining (MRC) technique. The MRC technique is extended to a nonblind combiner that uses a training sequence contained in the desired signal. Basic analysis and numerical simulations of its performance, under the power-limited condition and with fixed user terminals, show that the speed and robustness of desired-signal acquisition and undesired-signal suppression may outperform recursive-least-squares (RLS) beamformer with less computation, when it is applied to an array antenna with many elements.

  • Effective Radiation Efficiency of Resistor-Loaded Bow-Tie Antenna Covered with Ferrite-Coated Conducting Cavity Located above Ground Surface

    Yasuhiro NISHIOKA  Toru UNO  

     
    LETTER-Antennas and Propagation

      Vol:
    E83-B No:2
      Page(s):
    419-421

    This paper analyzes the effective radiation efficiency of a ground-penetrating radar (GPR) consisting of two resistor-loaded bow-tie antennas covered with a ferrite-coated conducting cavity by using finite-difference time-domain (FDTD) method. The GPR is located above a lossless or lossy ground surface. The relation between the radiation powers into the ground and air, dissipated powers at the loaded resistors and ferrite absorber, and the reflected power due to impedance mismatching, is clarified numerically.

  • A Novel Adaptive Array Utilizing Frequency Characteristics of Multi-Carrier Signals

    Mitoshi FUJIMOTO  Kunitoshi NISHIKAWA  Tsutayuki SHIBATA  Nobuyoshi KIKUMA  Naoki INAGAKI  

     
    PAPER-Radio Communication

      Vol:
    E83-B No:2
      Page(s):
    371-379

    A novel algorithm for an adaptive array that is suitable for a multi-carrier transmission will be proposed in this paper. In an adaptive array, signals received by antenna elements are weighted and combined together. In the proposed algorithm, distortion of a spectrum of the combined signal is detected and weight coefficients for each antenna element are controlled so that the spectrum of the combined signal becomes flat. Concept of the proposed algorithm can be interpreted as the CMA which is applied to signals sampled in the frequency domain. Furthermore, a configuration of the adaptive array will be shown. Signals separated in a receiver of the multi-carrier transmission are utilized to detect the distortion of the signal spectrum. By adopting the proposed configuration, the spectrum of the multi-carrier signal can be easily detected. In order to investigate the performance of the proposed adaptive array, computer simulation has been carried out. Numerical results show that; 1) A desired wave is captured well even if an interference wave is narrow band signal and is stronger than the desired wave. 2) Suppression performance for a co-channel interference wave depends on both a symbol timing and SIR of arrival waves. If the symbol timing of the interference wave greatly differs from the timing of FFT window of the receiver, the desired wave can be captured even if the co-channel interference wave is stronger more than 10 dB compared with the desired wave. The conventional CMA adaptive array has a serious problem that the narrow band interference wave is captured when it is stronger than the desired wave. On the other hand, it is extremely rare that the proposed adaptive array captures the narrow band interference wave. Therefore, it can be said that the proposed adaptive array is a robust system compared with the conventional system.

  • Underground Pipe Signal Extraction Using LoG Filter from Pulse Radar Images

    Mitsushige OKADA  Toru KANEKO  Kenjiro T. MIURA  

     
    LETTER-Image Processing, Image Pattern Recognition

      Vol:
    E83-D No:1
      Page(s):
    112-115

    A method for locating underground pipes from a pulse radar image is presented. The method employs the Laplacian of Gaussian filter to extract edges and employs the Hough transform to determine the depth of the pipes. A preliminary experiment showed its ability to detect deeply buried pipes with weak signal echoes.

  • Data-Parallel Volume Rendering with Adaptive Volume Subdivision

    Kentaro SANO  Hiroyuki KITAJIMA  Hiroaki KOBAYASHI  Tadao NAKAMURA  

     
    PAPER-Computer Graphics

      Vol:
    E83-D No:1
      Page(s):
    80-89

    A data-parallel processing approach is promising for real-time volume rendering because of the massive parallelism in volume rendering. In data-parallel volume rendering, local results processing elements(PEs) generate from allocated subvolumes are integrated to form a final image. Generally, the integration causes an overhead unavoidable in data-parallel volume rendering due to communications among PEs. This paper proposes a data-parallel shear-warp volume rendering algorithm combined with an adaptive volume subdivision method to reduce the communication overhead and improve processing efficiency. We implement the parallel algorithm on a message-passing multiprocessor system for performance evaluation. The experimental results show that the adaptive volume subdivision method can reduce the overhead and achieve higher efficiency compared with a conventional slab subdivision method.

  • Digital Watermarking Technique for Motion Pictures Based on Quantization

    Hiroshi OGAWA  Takao NAKAMURA  Atsuki TOMIOKA  Youichi TAKASHIMA  

     
    PAPER

      Vol:
    E83-A No:1
      Page(s):
    77-89

    A quantization-based watermarking system for motion pictures is proposed. In particular, methods for improving the image quality of watermarked video, the watermarking data tolerance, and the accuracy of watermark data detection are described. A quantitative evaluation of the reliability of watermarked data, which has not generally been discussed up to now, is also performed.

  • How to Enhance the Security of Public-Key Encryption at Minimum Cost

    Eiichiro FUJISAKI  Tatsuaki OKAMOTO  

     
    PAPER

      Vol:
    E83-A No:1
      Page(s):
    24-32

    This paper presents a simple and generic conversion from a public-key encryption scheme that is indistinguishable against chosen-plaintext attacks into a public-key encryption scheme that is indistinguishable against adaptive chosen-ciphertext attacks in the random oracle model. The scheme obtained by the conversion is as efficient as the original encryption scheme and the security reduction is very tight in the exact security manner.

  • Simple Sampling Techniques for Discovery Science

    Osamu WATANABE  

     
    INVITED PAPER

      Vol:
    E83-D No:1
      Page(s):
    19-26

    We explain three random sampling techniques that are simple but widely applicable for various problems involving huge data sets. The first technique is an immediate application of large deviation bounds. The second and the third ones are sequential sampling or adaptive sampling techniques. We fix one simple problem and explain these techniques by demonstrating algorithms for this problem and discussing their correctness and efficiency.

  • Symmetrical Factorization of Bent Function Type Complex Hadamard Matrices

    Shinya MATSUFUJI  Naoki SUEHIRO  

     
    PAPER

      Vol:
    E82-A No:12
      Page(s):
    2765-2770

    This paper discusses factorization of bent function type complex Hadamard matrices of order pn with a prime p. It is shown that any bent function type complex Hadamard matrix has symmetrical factorization, which can be expressed by the product of n matrices of order pn with pn+1 non-zero elements, a matrix of order pn with pn non-zero ones, and the n matrices, at most. As its application, a correlator for M-ary spread spectrum communications is successfully given, which can be simply constructed by the same circuits with reduced multiplicators, before and behind.

  • An Adaptive List-Output Viterbi Equalizer with Fast Compare-Select Operation

    Kazuo TANADA  Hiroshi KUBO  Atsushi IWASE  Makoto MIYAKE  

     
    PAPER

      Vol:
    E82-B No:12
      Page(s):
    2004-2011

    This paper proposes an adaptive list-output Viterbi equalizer (LVE) with fast compare-select operation, in order to achieve a good trade-off between bit error rate (BER) performance and processing speed. An LVE, which keeps several survivors for each state, has good BER performance in the presence of wide-spread intersymbol interference. However, the LVE suffers from large processing delay due to its sorting-based compare-select operation. The proposed adaptive LVE greatly reduces its processing delay, because it simplifies compare-select operation. In addition, computer simulation shows that the proposed LVE causes only slight BER performance degradation due to its simplification of compare-select operation. Thus, the proposed LVE achieves better BER performance than decision-feedback sequence estimation (DFSE) without an increase in processing delay.

1521-1540hit(1871hit)