The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] CTI(8214hit)

5461-5480hit(8214hit)

  • Two Methods for Decreasing the Computational Complexity of the MIMO ML Decoder

    Takayuki FUKATANI  Ryutaroh MATSUMOTO  Tomohiko UYEMATSU  

     
    PAPER-Communication Theory

      Vol:
    E87-A No:10
      Page(s):
    2571-2576

    We propose use of QR factorization with sort and Dijkstra's algorithm for decreasing the computational complexity of the sphere decoder that is used for ML detection of signals on the multi-antenna fading channel. QR factorization with sort decreases the complexity of searching part of the decoder with small increase in the complexity required for preprocessing part of the decoder. Dijkstra's algorithm decreases the complexity of searching part of the decoder with increase in the storage complexity. The computer simulation demonstrates that the complexity of the decoder is reduced by the proposed methods significantly.

  • Integrated Dissonant Frequency Filtering and Noise Reduction for Improving Perceptual Quality of Noisy Speech and Husky Voice

    Sangki KANG  Seong-Joon BAEK  

     
    LETTER-Speech and Hearing

      Vol:
    E87-A No:10
      Page(s):
    2799-2800

    There have been numerous studies on the enhancement of the noisy speech signal. In this paper, We propose a new speech enhancement method, that is, a DFF (Dissonant Frequency Filtering) scheme combined with NR (noise reduction) algorithm. The simulation results indicate that the proposed method provides a significant gain in perceptual quality compared with the conventional method. Therefore if the proposed enhancement scheme is used as a pre-filter, the output speech quality would be enhanced perceptually.

  • Cyclic D/A Converters Based on Iterated Function Systems

    Junya SHIMAKAWA  Toshimichi SAITO  

     
    LETTER-Nonlinear Problems

      Vol:
    E87-A No:10
      Page(s):
    2811-2814

    This letter considers relationship between cyclic digital-to-analog converters (DACs) and iterated function systems (IFSs). We introduce the cyclic DACs as inverse systems of analog-to-digital converters in terms of one-dimensional maps. We then compare the DACs with a typical example of existing applications of IFSs: chaos game representation for analysis of DNA structures. We also present a simple test circuit of a DAC for Gray decoding based on switched capacitors and confirm the basic operation experimentally.

  • Complex Refractive Index of Soda-Lime Glass: Measurement at 30-GHz and Empirical Formula in Microwave and Millimeter-Wave Regions

    Toshio IHARA  Tomohiro OGUCHI  Tamio TAZAKI  

     
    LETTER-Antennas and Propagation

      Vol:
    E87-B No:10
      Page(s):
    3155-3157

    In this paper, an experimental result of complex refractive index of soda-lime glass at 30-GHz obtained by transmission method is presented at first. Secondly, a simple empirical formula of complex refractive index of soda-lime glass over frequency range from 0.1-GHz to 1000-GHz is derived using the present experimental result together with data previously reported in literatures by various researchers.

  • Theoretical and Experimental Study of Propagation in 3D Tunnels

    Kazunori UCHIDA  Hidetoshi NOSE  Hiroshi MAEDA  Toshiaki MATSUNAGA  

     
    PAPER-Antennas and Propagation

      Vol:
    E87-B No:10
      Page(s):
    3044-3049

    This paper is concerned with the application of ray tracing method (RTM) to field analysis in bended and branched tunnels. On the line of sight, direct wave from a source and reflected waves at the tunnel walls are dominant compared with diffracted waves, but off the line of sight, diffraction can not be ignored especially beyond an abrupt bending. As a result, a detailed attention should be focused on the RTM analysis when dealing with propagation in the region off the line of sight. In this paper, we take into account of the diffraction rays which are originally reflection rays, next diffracted at a bending edge, and again converted to reflection rays. It is shown that numerical results are in good agreement with the experimental data.

  • Characteristics of Dual Frequency Planar Monopole Antenna for UWB System

    Yuko RIKUTA  Ryuji KOHNO  

     
    PAPER

      Vol:
    E87-A No:10
      Page(s):
    2607-2614

    An antenna with a wide bandwidth is required for ultra-wideband (UWB) system of the future. Several types of wideband antenna that cover the whole frequency range have been proposed. Since the UWB system would cover from 3.1 to 10.6 GHz, it is necessary to suppress the interference from other systems using some of this frequency band. This paper presents two types of novel planar monopole antenna: one consists of two connected rectangular plates and another one is an orthogonal type. The return loss characteristics, radiation pattern, and current distribution of these antennas were simulated by using the FDTD method. The proposed antennas had dual frequency and broad bandwidth characteristics at both resonant frequencies. The return loss level at the eliminated frequency between the resonant frequencies was almost 0 dB. The radiation patterns for the whole frequency range were almost omni-directional in the horizontal plane. The current distributions at each frequency were similar to that of a planar rectangular monopole. The radiation patterns thus were omni-directional in the horizontal plane at each resonant frequency. Therefore, the results showed that wide bandwidth characteristics could be achieved with such antennas.

  • On-line Identification Method of Continuous-Time Nonlinear Systems Using Radial Basis Function Network Model Adjusted by Genetic Algorithm

    Tomohiro HACHINO  Hitoshi TAKATA  

     
    PAPER

      Vol:
    E87-A No:9
      Page(s):
    2372-2378

    This paper deals with an on-line identification method based on a radial basis function (RBF) network model for continuous-time nonlinear systems. The nonlinear term of the objective system is represented by the RBF network. In order to track the time-varying system parameters and nonlinear term, the recursive least-squares (RLS) method is combined in a bootstrap manner with the genetic algorithm (GA). The centers of the RBF are coded into binary bit strings and searched by the GA, while the system parameters of the linear terms and the weighting parameters of the RBF are updated by the RLS method. Numerical experiments are carried out to demonstrate the effectiveness of the proposed method.

  • Robust Edge Detection by Independent Component Analysis in Noisy Images

    Xian-Hua HAN  Yen-Wei CHEN  Zensho NAKAO  

     
    PAPER-Image Processing and Video Processing

      Vol:
    E87-D No:9
      Page(s):
    2204-2211

    We propose a robust edge detection method based on independent component analysis (ICA). It is known that most of the basis functions extracted from natural images by ICA are sparse and similar to localized and oriented receptive fields, and in the proposed edge detection method, a target image is first transformed by ICA basis functions and then the edges are detected or reconstructed with sparse components only. Furthermore, by applying a shrinkage algorithm to filter out the components of noise in the ICA domain, we can readily obtain the sparse components of the original image, resulting in a kind of robust edge detection even for a noisy image with a very low SN ratio. The efficiency of the proposed method is demonstrated by experiments with some natural images.

  • Enhanced Fallback+: An Efficient Multiconstraint Path Selection Algorithm for QoS Routing

    Kazuhiko KINOSHITA  Hideaki TANIOKA  Tetsuya TAKINE  Koso MURAKAMI  

     
    PAPER-Internet

      Vol:
    E87-B No:9
      Page(s):
    2708-2718

    In future high-speed networks, provision of diverse multimedia services with strict quality-of-service (QoS) requirements, such as bandwidth, delay and so on, is desired. QoS routing is a possible solution to handle these services. Generally, a path selection for QoS routing is formulated as a shortest path problem subject to multiple constraints. However, it is known to be NP-complete when more than one QoS constraint is imposed. As a result, many heuristic algorithms have been proposed so far. The authors proposed a path selection algorithm Fallback+ for QoS routing, which focuses not only on the path selection with multiple constraints but also on the efficient use of network resources. This paper proposes an enhanced version of Fallback+, named Enhanced Fallback+, where in a shrewd way, it keeps tentative paths produced in the conventional Fallback algorithm with Dijkstra's algorithm. Simulation experiments prove the excellent performance of Enhanced Fallback+, compared with the original Fallback+ and other existing path selection algorithms.

  • Properties of Exponential Hashing

    Wenbin LUO  Gregory L. HEILEMAN  

     
    LETTER

      Vol:
    E87-A No:9
      Page(s):
    2408-2411

    The chaotic property of a new open addressing hash function, called exponential hashing, is presented. Our analysis indicates the connection between ergodic theory and hashing. Based on that, concepts from ergodic theory are applied to predict the performance of exponential hashing. Experimental results are presented to verify our theoretic analysis and the prediction.

  • An Output VSWR Protection Circuit Using Collector/Emitter Avalanche Breakdown for SiGe HBT Power Amplifiers

    Hyunchol SHIN  Hojung JU  M. Frank CHANG  Keith NELLIS  Peter ZAMPARDI  

     
    LETTER-Microwaves, Millimeter-Waves

      Vol:
    E87-C No:9
      Page(s):
    1643-1645

    An output load VSWR (voltage standing wave ratio) protection circuit for SiGe power amplifiers (PA) is presented by using the relatively low collector-emitter avalanche breakdown characteristic of SiGe HBT. Unlike the conventional diode-type switch, the new protection circuit completely eliminates the undesirable dc leakage current during the normal operation of the PA. Simulations and measurements show the proposed protection circuit enhances the ruggedness of the PA at harsh operating condition while it imposes only minor performance degradation at normal operating condition.

  • Effect of Chip Waveforms on the Detection Performance of the Energy Detector in DS/SS Communications

    Chiho LEE  Kiseon KIM  

     
    LETTER-Spread Spectrum Technologies and Applications

      Vol:
    E87-A No:9
      Page(s):
    2474-2478

    In this letter, we show the effects of the chip waveform selection on the detection performance of the energy detector in DS/SS communications. Three chip waveforms such as rectangular, half-sine and raised-cosine are examined as the DS/SS chip waveform. It is demonstrated that the partial-band detection can enhance the detection performance of the energy detector approximately 50-70% compared with the full-band detection. When the chip rate is identical, the raised-cosine waveform shows lower detection probability due to its wider spreading bandwidth. However, when the spreading bandwidth is identical, the rectangular waveform shows lower detection probability due to its lower partial-band energy factor.

  • Analyzing Power Efficiency of Predeclaration-Based Transaction Processing in Mobile Broadcast Environments

    SangKeun LEE  

     
    LETTER-Image Processing and Video Processing

      Vol:
    E87-D No:9
      Page(s):
    2277-2282

    Broadcasting in wireless mobile computing environments is an effective technique to disseminate information to a massive number of clients equipped with powerful, battery operated devices. To conserve the usage of energy, which is scarce resource, the information to be broadcast must be organized so that the client can selectively tune in at the desired portion of the broadcast. In this letter, the power efficient behavior of a predeclaration-based transaction processing in mobile broadcast environments is examined. The analytical studies have been performed to observe the effectiveness of predeclaration-based transaction processing combined with selective tuning ability in mobile broadcast environments.

  • Self-Adaptive Java Production System and Its Application to a Learning Assistance System

    Yoshitaka FUJIWARA  Shin-ichirou OKADA  Tomoki SUZUKI  Yoshiaki OHNISHI  Hideki YOSHIDA  

     
    PAPER-Artificial Intelligence and Cognitive Science

      Vol:
    E87-D No:9
      Page(s):
    2186-2194

    Although production systems are widely used in artificial intelligence (AI) applications, they are seen to have certain disadvantages in terms of their need for special purpose assistance software to build and execute their knowledge-bases (KB), and in the fact that they will not run on any operating system (platform dependency). Furthermore, for AI applications such as learning assistance systems, there is a strong requirement for a self-adaptive function enabling a flexible change in the service contents provided, according to the user. Against such a background, a Java based production system (JPS) featuring no requirement for special purpose assistance software and no platform dependency, is proposed. Furthermore, a new self-adaptive Java production system (A-JPS) is proposed to realize the "user adaptation" requirement mentioned above. Its key characteristic is the combination of JPS with a Causal-network (CN) for obtaining a "user profile". In addition, the execution time of the JPS was studied using several benchmark problems with the aim of comparing the effectiveness of different matching algorithms in their recognize-act cycles as well as comparing their performance to that of traditional procedural programs for different problem types. Moreover, the effectiveness of the user adaptation function of the A-JPS was studied for the case of a CN with a general DAG structure, using the experimental KB of a learning assistance system.

  • Advanced and Intelligent RF Front End Technology

    Kevin M.K.H. LEONG  Ji-Yong PARK  Yuanxun WANG  Tatsuo ITOH  

     
    INVITED PAPER

      Vol:
    E87-C No:9
      Page(s):
    1495-1502

    Integrated implementation of RF front-end components has been shown to posses many benefits. Furthermore, it presents a new way of approaching RF design. This paper will discuss the recent developments by the author's group in the field of RF front-end technology. This will include stand-alone RF front-end components such as a self-heterodyne mixer as well as more functional front-end circuitry such as digital beamformer arrays, retrodirective arrays and an array error calibration scheme.

  • The Impact of Smart Antenna Characteristics on Network Throughput and Channel Model BER: A Review

    Constantine A. BALANIS  Panayiotis IOANNIDES  

     
    INVITED PAPER

      Vol:
    E87-C No:9
      Page(s):
    1469-1476

    Unlike most of the previous work for smart antennas that covered each area individually (antenna-array design, signal processing and communications algorithms and network throughput), this paper may be considered as a review of comprehensive effort on smart antennas that examines and integrates antenna array design, the development of signal processing algorithms (for angle of arrival estimation and adaptive beamforming), strategies for combating fading, and the impact on the network throughput. In particular, this study considers problems dealing with the impact of the antenna design on the network throughput. In addition, fading channels and tradeoffs between diversity combining and adaptive beamforming are examined as well as channel coding to improve the system performance.

  • Numerical and Experimental Study of Instability and Bifurcation in AC/DC PFC Circuit

    Mohamed ORABI  Tamotsu NINOMIYA  

     
    PAPER

      Vol:
    E87-A No:9
      Page(s):
    2256-2266

    From the bifurcation viewpoint, this study examines a boost PFC converter with average-current-mode control. The boost PFC converter is considered to be a nonlinear circuit because of its use of a multiplier and its large duty cycle variation for input current control. However, most previous studies have implemented linear analysis, which ignores the effects of nonlinearity. Therefore, those studies were unable to detect instability phenomena. Nonlinearity produces bifurcations and chaos when circuit parameters change. The classical PFC design is based on a stable periodic orbit that has desired characteristics. This paper describes the main bifurcations that this orbit may undergo when the parameters of the circuit change. In addition, the instability regions in the PFC converter are delimited. That fact is of practical interest for the design process. Moreover, a prototype PFC circuit is introduced to examine these instability phenomena experimentally. Then, a special numerical program is developed. Bifurcation maps are provided based on this numerical study. They give a comprehensive outstanding for stability conditions and identify stable regions in the parameter space. Moreover, these maps indicate PFC converter dynamics, power factors, and regulation. Finally, numerical analyses and experimentation show good agreement.

  • Superluminal Group Velocities in Passive Media

    Hiroyuki HOSONO  Toshio HOSONO  

     
    PAPER-Basic Electromagnetic Analysis

      Vol:
    E87-C No:9
      Page(s):
    1578-1585

    Superluminal group velocity in dispersive media has long been controversial. A partial source of confusion seems to be the absence of high precision numerical results concerning the waveform of the transmitted signal. This paper gives the precise waveforms of a causal half-sine-modulated pulse and a triangle-modulated pulse propagating in the Lorentz medium. Thus, the effects of analyticity of signal are clarified, which the analysis using Gaussian pulse cannot. Further, to deepen understanding of the mechanism of superluminal group velocity, we give a network theoretic consideration.

  • Visualization of High Frequency Diffraction Based on Physical Optics

    Tetsu SHIJO  Takayoshi ITOH  Makoto ANDO  

     
    PAPER-Basic Electromagnetic Analysis

      Vol:
    E87-C No:9
      Page(s):
    1607-1614

    High frequency (HF) diffraction is known as local phenomena, and only parts of the scatterer contribute to the field such as the edge, corner and specular reflection point etc. Many HF diffraction techniques such as Geometrical Theory of Diffraction (GTD), Uniform Theory of Diffraction (UTD) and Physical Theory of Diffraction (PTD) utilize these assumptions explicitly. Physical Optics (PO), on the other hand, expresses the diffraction in terms of radiation integral or the sum total of contributions from all the illuminated parts of scatterers, while the PO currents are locally defined at the point of integration. This paper presents PO-based visualization of the scattering and diffraction phenomena and tries to provide the intuitive understanding of local property of HF diffraction as well as the relations between PO and the ray techniques such as GTD, UTD etc. A weighting named "eye function" is introduced in PO radiation integrals to take into account of local cancellation between rapidly oscillating contributions from adjacent currents; this extracts important areas of current distribution, whose location moves not only with the source but also with the observation point. PO visualization illustrates both local property of HF scattering and defects associated with ray techniques. Furthermore, careful examination of visualized image reminds us of the error factor in PO as applied for curved surfaces, named fictitious penetrating rays. They have been scarcely recognized if not for visualization, though they disturb the geometrical shadow behind the opaque scatterer and can be the leading error factors of PO in shadow regions. Finally, visualization is extended to slot antennas with finite ground planes by hybrid use of modified edge representation (MER) to assess the significance of edge diffraction.

  • Stability Boundaries Analysis of Electric Power System with DC Transmission Based on Differential-Algebraic Equation System

    Yoshihiko SUSUKI  Takashi HIKIHARA  Hsiao-Dong CHIANG  

     
    PAPER

      Vol:
    E87-A No:9
      Page(s):
    2339-2346

    This paper discusses stability boundaries in an electric power system with dc transmission based on a differential-algebraic equation (DAE) system. The DAE system is derived to analyze transient stability of the ac/dc power system: the differential equation represents the dynamics of the generator and the dc transmission, and the algebraic equation the active and reactive power relationship between the ac system and the dc transmission. In this paper complete characterization of stability boundaries of stable equilibrium points in the DAE system is derived based on an energy function for the associated singularly perturbed (SP) system. The obtained result completely describes global structures of the stability boundaries in solution space of the DAE system. In addition the characterization is confirmed via several numerical results with a stability boundary.

5461-5480hit(8214hit)