This paper deals with reflection and transmission of a TE plane wave from a two-dimensional random slab with slanted fluctuation by means of the stochastic functional approach. Such slanted fluctuation of the random slab is written by a homogeneous random field having a power spectrum with a rotation angle. By starting with the previous paper [IEICE Trans. Electron., Vol. E92-C, no.1, pp.77–84, January 2009], any statistical quantities are immediately obtained even for slanted fluctuation cases. The first-order incoherent scattering cross section is numerically calculated and illustrated in figures. It is then newly found that shift and separation phenomena of the leading or enhanced peaks at four characteristic scattering angles take place in the transmission and reflection sides, respectively.
Ichiro HIROSAWA Tomoyuki KOGANEZAWA Hidenori ISHII
Depth profile of mass density of vertical alignment film was investigated by X-ray reflectivity, in order to characterize side chains at film surface for vertical alignment of liquid crystals. Existence thin and low density top layer at surface of polyimide film, which was considered to be side chains, was clearly detected. Furthermore, existence of high density layer just below side chain layer was also found, and it is suggested that backbone chain ordering at film surface. Effect of rubbing on VA film was not detected. However, density growth by annealing just below side chain layer of rubbed VA film suggests more ordered backbone chain alignment induced by rubbing.
This study aims how to contain the environment reflection in a dynamic on-body ultra wideband (UWB) channel model. Based on a measurement approach, it is demonstrated that a complete body area channel model can be regarded as a combination of the on-body propagation characteristic and additional components from the environment. Based on such a channel model, the effect of environment reflection on the average bit error rate performance was investigated for a typical impulse radio UWB system.
Vakhtang JANDIERI Kiyotoshi YASUMOTO Young-Ki CHO
A semi-analytical approach for analyzing the electromagnetic radiation of a line source in cylindrical electromagnetic bandgap (EBG) structure is presented. The cylindrical structure is composed of circular rods periodically distributed along concentrically layered circular rings. The method uses the T-matrix of a circular rod in isolation, the reflection and transmission matrices of a cylindrical array expressed in terms of the cylindrical waves as the basis, and the generalized reflection and transmission matrices for a layered cylindrical structure. Using the proposed method, the radiated field from a line source placed inside a three-layered cylindrical EBG structure with defects is investigated. The defects are created by removing the particular circular rods from each circular ring. The structure is prominent from the viewpoint of flexible design of the directive antennas. Numerical examples demonstrate that the cylindrical EBG structures are very effective at forming and controlling the directed beam in the radiated fields.
Kyung-Won LEE Ic-Pyo HONG Yeong-Chul CHUNG Jong-Gwan YOOK
We proposed and analyzed a fiber-reinforced ceramic (FRC) composite for a protection layer on top of an antenna mounted on the outer surface of aircraft. The manufactured FRC is a single-layered flat construct. To analyze the performance of the FRC, we extracted the material constant using the transmission/reflection (T/R) method. We described the relation between the pressure and strength of the FRC radome with respect to mechanical properties and analyzed the insertion loss with respect to electrical properties. We evaluated the characteristics of the FRC radome in conjunction with the horn antenna and showed that the analytic results for the FRC radome agree with the experiment results.
Dazhi PIAO Guizhen LU Zhixing YANG
The polarization degrees of freedom (DOF) of the hexapolarized multiple input multiple output (MIMO) system over the ground reflected channel is studied in this paper by the deterministic field solution. Using the simple two-ray model, we could get some basic understandings for the influence of a single reflecting surface on the polarization DOF of the multipolarized MIMO system. Computation results show that the number of parallel independent channels in a multipolarized MIMO system depends mainly on the communication range and the height of antennas. In free space transmission, with equal height of transmitter and receiver antennas, large polarization DOF value only occurs in the near field case and it drops sharply to 2 with the increase of transmission range. Whereas for the ground reflect channel, there will be a polarization DOF larger than 4 occurring at longer communication distance with an unequal transmitter and receiver antenna height.
Ronald JOSEPH Syuhei NAKAO Takeshi FUKUSAKO
A novel circularly polarized antenna with square slot for broadband characteristics is proposed in this paper. The horizontal and vertical components of the L-shaped probe, which is a key element to generate circular polarization, are separated in the structure, contrary to the concept of joined probes. Another novelty, placing stubs in the slot, which are attached to the ground plane, is proposed to improve the axial ratio (AR) characteristics of the antenna by around 10%. Placing a reflector at a distance of λ0/4 from the antenna to obtain unidirectional patterns is effective when no stubs are placed in the slot. The antenna attains a < 10 dB return loss bandwidth of 47.5% (2.76-4.48 GHz) and < 3 dB axial ratio (AR) bandwidth of 42.47% (2.67-4.11 GHz) in measurement. Parametric studies on key parameters and measured results are also presented.
Bingbing ZHUANG Hiroshi NAGAMOCHI
In a rooted triangulated planar graph, an outer vertex and two outer edges incident to it are designated as its root, respectively. Two plane embeddings of rooted triangulated planar graphs are defined to be equivalent if they admit an isomorphism such that the designated roots correspond to each other. Given a positive integer n, we give an O(n)-space and O(1)-time delay algorithm that generates all biconnected rooted triangulated planar graphs with at most n vertices without delivering two reflectively symmetric copies.
A self-calibrating per-pin phase adjuster, which does not require any feedback from the slave chip and a multi-phase clock in the master and slave chips, is proposed for a high speed parallel chip-to-chip interface with a source synchronous double data rate (DDR) signaling. It achieves not only per-pin phase adjustment but also 90° phase shift of a strobe signal for a source synchronous DDR signaling. For this self-calibration, the phase adjuster measures and compensates the only relative mismatched delay among channels by utilizing on-chip time-domain reflectometry (TDR). Thus, variable delay lines, finite state machines, and a test signal generator are additionally required for the proposed phase adjuster. In addition, the power-gating receiver is used to reduce the discontinuity effect of the channel including parasitic components of chip package. To verify the proposed self-calibrating per-pin phase adjuster, the transceivers with 16 data, strobe, and clock signals for the interface with a source synchronous DDR signaling were implemented by using a 60 nm 1-poly 3-metal CMOS DRAM process with a 1.5 V supply. Each phase skew between Strobe and 16 Data was corrected within 0.028UI at 1.6-Gb/s data rate in a point-to-point channel.
This paper presents an efficient ray-launching method for 2D indoor propagation problem, by including crucial multiple reflection effect inside wall. We here focus on the derivation of the reflected and transmitted ray solutions at/through wall when a magnetic source is located in the indoor environment. An efficient approximation, which is called collective ray approximation, is carried out to bundle or collect the internal multiple reflected rays into the primary one. It is resultantly confirmed from the detailed numerical experiments that the derived collective ray solutions can be confidently effective when the internal reflections strongly contribute to the propagation characteristic in the propagation environment, regardless of angle of the incidence.
Jae-Ho LEE Jiro HIROKAWA Makoto ANDO
Post-wall waveguide with a linear array of reflection-canceling slot pairs and center-feed is designed to cancel the frequency dependent tilting of the main beam and enhance the bandwidth of the antenna boresight gain. The array is fed at the center of the waveguide from the backside; the length of the radiating waveguide is halved and the long line effect in traveling wave operation is suppressed. Authors establish the array design procedure in separate steps to reduce the computational load in the iterative optimization by using Ansoft HFSS simulator. A center-feed linear array as well as an end-feed equivalent with uniform excitation is designed for 25.6 GHz operation and measured. The measured performances confirm the design and the advantage of the centre-feed; a frequency independent boresight beam is observed and the frequency bandwidth for 3 dB gain reduction is enhanced by 1.5 times compared to the end-feed array.
When a monochromatic electromagnetic plane wave is incident on an infinitely extending surface with the translation invariance property, a curious phenomenon often takes place at a low grazing angle of incidence, at which the total wave field vanishes and a dark shadow appears. This paper looks for physical and mathematical reasons why such a shadow occurs. Three cases are considered: wave reflection by a flat interface between two media, diffraction by a periodic surface, and scattering from a homogeneous random surface. Then, it is found that, when a translation invariant surface does not support guided waves (eigen functions) propagating with real propagation constants, such the shadow always takes place, because the primary excitation disappears at a low grazing angle of incidence. At the same time, a shadow form of solution is proposed. Further, several open problems are given for future works.
We present a new method that can represent the reflectance of metallic paints accurately using a two-layer reflectance model with sampled microfacet distribution functions. We model the structure of metallic paints simplified by two layers: a binder surface that follows a microfacet distribution and a sub-layer that also follows a facet distribution. In the sub-layer, the diffuse and the specular reflectance represent color pigments and metallic flakes respectively. We use an iterative method based on the principle of Gauss-Seidel relaxation that stably fits the measured data to our highly non-linear model. We optimize the model by handling the microfacet distribution terms as a piecewise linear non-parametric form in order to increase its degree of freedom. The proposed model is validated by applying it to various metallic paints. The results show that our model has better fitting performance compared to the models used in other studies. Our model provides better accuracy due to the non-parametric terms employed in the model, and also gives efficiency in analyzing the characteristics of metallic paints by the analytical form embedded in the model. The non-parametric terms for the microfacet distribution in our model require densely measured data but not for the entire BRDF(bidirectional reflectance distribution function) domain, so that our method can reduce the burden of data acquisition during measurement. Especially, it becomes efficient for a system that uses a curved-sample based measurement system which allows us to obtain dense data in microfacet domain by a single measurement.
This manuscript introduces a pointing interface for a tabletop display with a reflex in eye-hand coordination. The reflex is a natural response to inconsistency between kinetic information of a mouse and visual feedback of the mouse cursor. The reflex yields information on which side the user sees the screen from, so that the screen coordinates are aligned with the user's position.
Shinichiro YAMAMOTO Tohru IWAI Kenichi HATAKEYAMA
In this paper, an evaluation method for electromagnetic wave absorber with anisotropic reflection properties is discussed. Anisotropic absorber panels have an axis of anisotropy (principal axis). In order to specify the principal axis, the evaluation method based on the diagonalization of reflection coefficient matrix is used. Also, the permittivity of absorber materials is considered.
Yeong-Chul CHUNG Kyung-Won LEE Ic-Pyo HONG Kyung-Hyun OH Jong-Gwan YOOK
In this letter, a new CCM material, adding Ni powder to a conventional CCM, for X-band applications is designed and analyzed to improve the SE. To obtain the SE of the fabricated CCM accurately, material constants of the CCM of the permittivity and permeability were extracted using transmission/reflection measurements. Using the material constants derived from the measurement, the SE was calculated and the results were verified using a commercial full-wave three-dimensional electromagnetic wave simulator. The SE of the proposed the CCM was improved by approximately 4 dB in the X band compared to that of a conventional CCM. The CCM proposed in this paper can be applied as a shielding material as well as for housing of various communication systems and electrical instruments.
This paper presents a numerical approach to the time-domain analysis of N-branch-line couplers. The approach is based on the modified central difference (MCD) method combined with internal boundary treatments, which consist of the time-domain scattering matrix for the three-port junction discontinuity. The behavior of the signal propagation including multiple reflections on the N-branch-line coupler with and without line loss is analyzed and demonstrated in the time domain. Additionally, the S-parameters obtained from Gaussian pulse responses of the N-branch-line directional couplers are shown. The simulated results are in good agreement with those of the commercial simulator.
Vakhtang JANDIERI Kiyotoshi YASUMOTO Anurag SHARMA Hansa CHAUHAN
A rigorous semi-analytical approach for the scalar field in a microstructured optical fiber, which is formed of layered cylindrical arrays of circular rods symmetrically distributed on each concentric cylindrical layer, is presented. The method uses the T-matrix of a circular rod in isolation and the generalized reflection and transmission matrices of cylindrical arrays. Numerical examples of the mode index for three-layered hexagonal structure of circular air holes are demonstrated and compared with those obtained by a variational method.
Yasuhiko TAMURA Kiyoshi TSUTSUMI
This paper studies reflection and transmission of a TE plane wave from a two-dimensional random slab with statistically anisotropic fluctuation by means of the stochastic functional approach. By starting with a representation of the random wavefield presented in the previous paper [IEICE Trans. Electron., vol.E92-C, no.1, pp.77-84, Jan. 2009], a solution algorithm of the multiple renormalized mass operator is newly shown even for anisotropic fluctuation. The multiple renormalized mass operator, the first-order incoherent scattering cross section and the optical theorem are numerically calculated and illustrated in figures. The relation between statistical properties and anisotropic fluctuation is discussed.
Takehito SUZUKI Jiro HIROKAWA Makoto ANDO
This paper presents the analysis and design of a reflection-cancelling transverse slot-pair array antenna with baffles by using the Spectrum of Two-Dimensional Solutions (S2DS) method. For the transverse slot array, the slot spacings with more than one free-space wavelength cause the grating-lobes. The baffles suppress the grating-lobes effectively. A one-dimensional slot array is extracted from the 2D array with in-phase excitation by assuming periodicity in the transversal direction. The uniform excitation over the finite array is synthesized iteratively to demonstrate the fast and accurate results by S2DS. A unit design model with the baffles is introduced to determine the initial parameters of the slot-pairs, which greatly accelerate the iterations process. Experiments at 25.3 GHz demonstrate the suppression of the grating lobes to the level less than -20.0 dB and also the good uniformity of the aperture field distribution.