1-20hit |
Ikuto YAMAGATA Masateru TSUNODA Keitaro NAKASAI
Software development companies must consider employees' job satisfaction and turnover intentions. To explain the related factors, this study focused on future perspective index (FPI). FPI was assumed to relate positively to satisfaction and negatively to turnover. In the analysis, we compared the FPI with existing factors that are considered to be related to job satisfaction. We discovered that the FPI was promising for enhancing explanatory power, particularly when analyzing satisfaction.
Fauzan ARROFIQI Takashi WATANABE Achmad ARIFIN
The purpose of this study was to develop a practical functional electrical stimulation (FES) controller for joint movements restoration based on an optimal control technique by cascading a linear model predictive control (MPC) and a nonlinear transformation. The cascading configuration was aimed to obtain an FES controller that is able to deal with a nonlinear system. The nonlinear transformation was utilized to transform the linear solution of linear MPC to become a nonlinear solution in form of optimized electrical stimulation intensity. Four different types of nonlinear functions were used to realize the nonlinear transformation. A simple parameter estimation to determine the value of the nonlinear transformation parameter was also developed. The tracking control capability of the proposed controller along with the parameter estimation was examined in controlling the 1-DOF wrist joint movement through computer simulation. The proposed controller was also compared with a fuzzy FES controller. The proposed MPC-FES controller with estimated parameter value worked properly and had a better control accuracy than the fuzzy controller. The parameter estimation was suggested to be useful and effective in practical FES control applications to reduce the time-consuming of determining the parameter value of the proposed controller.
Takashi WATANABE Takumi TADANO
Rehabilitation training with pedaling wheelchair in combination with functional electrical stimulation (FES) can be effective for decreasing the risk of falling significantly. Automatic adjustment of cycling speed and making a turn without standstill has been desired for practical applications of the training with mobile FES cycling. This study aimed at developing closed-loop control system of cycling speed with the pedaling wheelchair. Considering clinical practical use with no requirement of extensive modifications of the wheelchair, measurement method of cycling speed with inertial motion measurement units (IMUs) was introduced, and fuzzy controller for adjusting stimulation intensity to regulate cycling speed was designed. The developed prototype of closed-loop FES control system achieved appropriately cycling speed for the different target speeds in most of control trials with neurologically intact subjects. In addition, all the control trials of low speed cycling including U-turn achieved maintaining the target speed without standstill. Cycling distance and cycling time increased with the closed-loop control of low cycling speed compensating decreasing of cycling speed caused by muscle fatigue. From these results, the developed closed-loop fuzzy FES control system was suggested to work reliably in mobile FES cycling.
Takashi WATANABE Takumi TADANO
Fuzzy controller can be useful to realize a practical closed-loop FES controller, because it is possible to make it easy to design FES controller and to determine its parameter values, especially for controlling multi-joint movements by stimulating many muscles including antagonistic muscle pairs. This study focused on using fuzzy controller for the closed-loop control of cycling speed during FES cycling with pedaling wheelchair. However, a designed fuzzy controller has to be tested experimentally in control performance. In this paper, a closed-loop fuzzy FES controller was designed and tested in knee extension movements comparing to a PID controller with healthy subjects before applying to FES cycling. The developed fuzzy controller showed good control performance as a whole in comparing to PID controller and its parameter values were determined through simple control tests of the target movement.
Mizuki HIGUCHI Kenichi SORACHI Yutaka HATA
This paper analyzes the relationship between the changes of Body Mass Index (BMI) and those of the other health checkup data in one year. We divide all data of the subjects into 13 groups by their BMI changes. We calculate these variations in each group and classify the variations into gender, age, and BMI. As the result by gender, men were more influenced by the changes of BMI than women at Hb-A1c, AC, GPT, GTP, and TG. As the result of classification by age, they were influenced by the changes of BMI at Hb-A1c, GPT, and DTP by age. As the result of classification by BMI, inspection values such as GOT, GPT, and GTP decreased according to the decrement of BMI. Next we show the result on gender-age, gender-BMI, and age-BMI clusters. Our results showed that subjects should reduce BMI values in order to improve lifestyle-related diseases. Several inspection values would be improved according to decrement of BMI. Conversely, it may be difficult for subjects with under 18 of BMI to manage them by BMI. We show a possibility that we could prevent the lifestyle disease by controlling BMI.
Naotake KAMIURA Shoji KOBASHI Manabu NII Takayuki YUMOTO Ichiro YAMAMOTO
In this paper, we present a method of analyzing relationships between items in specific health examination data, as one of the basic researches to address increases of lifestyle-related diseases. We use self-organizing maps, and pick up the data from the examination dataset according to the condition specified by some item values. We then focus on twelve items such as hemoglobin A1c (HbA1c), aspartate transaminase (AST), alanine transaminase (ALT), gamma-glutamyl transpeptidase (γ-GTP), and triglyceride (TG). We generate training data presented to a map by calculating the difference between item values associated with successive two years and normalizing the values of this calculation. We label neurons in the map on condition that one of the item values of training data is employed as a parameter. We finally examine the relationships between items by comparing results of labeling (clusters formed in the map) to each other. From experimental results, we separately reveal the relationships among HbA1c, AST, ALT, γ-GTP and TG in the unfavorable case of HbA1c value increasing and those in the favorable case of HbA1c value decreasing.
Masakazu MORIMOTO Naotake KAMIURA Yutaka HATA Ichiro YAMAMOTO
To promote effective guidance by health checkup results, this paper predict a likelihood of developing lifestyle-related diseases from health check data. In this paper, we focus on the fluctuation of hemoglobin A1c (HbA1c) value, which deeply connected with diabetes onset. Here we predict incensement of HbA1c value and examine which kind of health checkup item has important role for HbA1c fluctuation. Our experimental results show that, when we classify the subjects according to their gender and triglyceride (TG) fluctuation value, we will effectively evaluate the risk of diabetes onset for each class.
Jun KURIHARA Kenji YOKOTA Atsushi TAGAMI
Content-centric networking (CCN) is an emerging networking architecture that is being actively investigated in both the research and industrial communities. In the latest version of CCN, a large number of interests have to be issued when large content is retrieved. Since CCN routers have to search several tables for each incoming interest, this could cause a serious problem of router workload. In order to solve this problem, this paper introduces a novel strategy of “grouping” multiple interests with common information and “packing” them to a special interest called the list interest. Our list interest is designed to co-operate with the manifest of CCN as its dual. This paper demonstrates that by skipping and terminating several search steps using the common information in the list interest, the router can search its tables for the list interest-based request with dramatically smaller complexity than the case of the standard interest-based request. Furthermore, we also consider the deployment of list interests and design a novel TCP-like congestion control method for list interests to employ them just like standard interests.
Takashi WATANABE Yuta KARASAWA
The cycling wheelchair “Profhand” was developed in Japan as locomotion and lower limb rehabilitation device for hemiplegic subjects and elderly persons. Functional electrical stimulation (FES) control of paralyzed lower limbs enables application of the Profhand to paraplegic subjects as a rehabilitation device. In this paper, simplified muscle stimulation control for FES cycling with Profhand was examined for practical application, because cycling speed was low and not stable in our preliminary study and there was a difficulty in setting stimulation electrodes for the gluteus maximus. First, a guideline of target cycling speed to be achieved by FES cycling was determined from voluntary cycling with healthy subjects in order to evaluate FES cycling control. The cycling speed of 0.6m/s was determined as acceptable value and 1.0m/s was as ideal one. Then, stimulation to the gluteus maximus and that to the dorsiflexor muscles in addition to the quadriceps femoris were examined for simple FES cycling control for Profhand with healthy subjects. Stimulation timing was adjusted automatically during cycling based on muscle response time to electrical stimulation and cycling speed, which was shown to be effective for FES cycling control. Simple FES cycling control with Profhand removing stimulation to the gluteus maximus was found to be feasible. Stimulation to the dorsiflexor muscles with the quadriceps femoris was suggested to be effective for practical, simple FES cycling with Profhand in case of removing the gluteus maximus stimulation.
Katsuaki MOMIYAMA Kensaku KANOMATA Shigeru KUBOTA Fumihiko HIROSE
We investigated solid-phase growth reactions for the fabrication of β-FeSi2 films from Fe and FeSi sources by reflection high-energy electron diffraction (RHEED). To enhance the interdiffusion of Fe and Si for the growth of β-FeSi2, the use of FeSi instead of pure Fe as the source for the initial deposition was examined. The RHEED observation during the solid phase reaction indicated that the growth temperature was markedly decreased to 390 K using the FeSi source. We discuss the reaction mechanism of the solid phase growth of β-FeSi2 from Fe and FeSi sources in this paper.
Takashi WATANABE Tomoya MASUKO Achmad ARIFIN
The fuzzy controller based on cycle-to-cycle control with output value adjustment factors (OAF) was developed for restoring gait of paralyzed subjects by using functional electrical stimulation (FES). Results of maximum knee flexion and extension controls with neurologically intact subjects suggested that the OAFs would be effective in reaching the target within small number of cycles and in reducing the error after reaching the target. Oscillating responses between cycles were also suppressed. The fuzzy controller was expected to be examined to optimize the OAFs with more subjects including paralyzed patients for clinical application.
Takashi WATANABE Kenji KUROSAWA Makoto YOSHIZAWA
A Feedback Error Learning (FEL) scheme was found to be applicable to joint angle control by Functional Electrical Stimulation (FES) in our previous study. However, the FEL-FES controller had a problem in learning of the inverse dynamics model (IDM) in some cases. In this paper, methods of applying the FEL to FES control were examined in controlling 1-DOF movement of the wrist joint stimulating 2 muscles through computer simulation under several control conditions with several subject models. The problems in applying FEL to FES controller were suggested to be in restricting stimulation intensity to positive values between the minimum and the maximum intensities and in the case of very small output values of the IDM. Learning of the IDM was greatly improved by considering the IDM output range with setting the minimum ANN output value in calculating ANN connection weight change.
Takashi WATANABE Tomoya MASUKO Achmad ARIFIN Makoto YOSHIZAWA
Functional Electrical Stimulation (FES) can be effective in assisting or restoring paralyzed motor functions. The purpose of this study is to examine experimentally the fuzzy controller based on cycle-to-cycle control for FES-induced gait. A basic experimental test was performed on controlling maximum knee extension angle with normal subjects. In most of control trials, the joint angle was controlled well compensating changes in muscle responses to electrical stimulation. The results show that the fuzzy controller would be practical in clinical applications of gait control by FES. An automatic parameter tuning would be required practically for quick responses in reaching the target and in compensating the change in muscle responses without causing oscillating responses.
Achmad ARIFIN Takashi WATANABE Nozomu HOSHIMIYA
The goal of this study was to design a practical fuzzy controller of the cycle-to-cycle control for multi-joint movements of swing phase of functional electrical stimulation (FES) induced gait. First, we designed three fuzzy controllers (a fixed fuzzy controller, a fuzzy controller with parameter adjustment based on the gradient descent method, and a fuzzy controller with parameter adjustment based on a fuzzy model) and two PID controllers (a fixed PID and an adaptive PID controllers) for controlling two-joint (knee and ankle) movements. Control capabilities of the designed controllers were tested in automatic generation of stimulation burst duration and in compensation of muscle fatigue through computer simulations using a musculo-skeletal model. The fuzzy controllers showed better responses than the PID controllers in the both control capabilities. The parameter adjustment based on the fuzzy model was shown to be effective when oscillating response was caused due to the inter-subject variability. Based on these results, we designed the fuzzy controller with the parameter adjustment realized using the fuzzy model for controlling three-joint (hip, knee, and ankle) movements. The controlled gait pattern obtained by computer simulation was not significantly different from the normal gait pattern and it could be qualitatively accepted in clinical FES gait control. The fuzzy controller designed for the cycle-to-cycle control for multi-joint movements during the swing phase of the FES gait was expected to be examined clinically.
Hojoon YEOM Youngcheol PARK Hyoungro YOON
To use the voluntary electromyogram (EMG) as a control signal of the EMG controlled functional electrical stimulator (FES), it is required to reduce the stimulation artifact and non-voluntary contribution (M-wave). In this study, a Gram-Schmidt (GS) prediction error filter (PEF) that can effectively eliminates the M-wave from voluntary EMG is presented. Also, the presented GS PEF is implemented on the field the programmable gate array (FPGA) for real-time processing and the performance is tested with simulated and real signals. Experimental results showed that GS-PEF was effective in reducing M-wave and preserving voluntary EMG.
Achmad ARIFIN Takashi WATANABE Nozomu HOSHIMIYA
We proposed a fuzzy control scheme to implement the cycle-to-cycle control for restoring swing phase of gait using functional electrical stimulation (FES). We designed two fuzzy controllers for the biceps femoris short head (BFS) and the vastus muscles to control flexion and extension of the knee joint during the swing phase. Control capabilities of the designed fuzzy controllers were tested and compared to proportional-integral-derivative (PID) and adaptive PID controllers in automatic generation of stimulation burst duration and compensation of muscle fatigue through computer simulations using a musculo-skeletal model. Parameter adaptations in the adaptive PID controllers did not significantly improve the control performance of the PID controllers. The fuzzy controllers were superior to the PID and adaptive PID controllers under several subject conditions and different fatigue levels. These results showed the fuzzy controller would be suitable to implement the cycle-to-cycle control of FES-induced gait.
Hiroki HIGA Ikuo NAKAMURA Nozomu HOSHIMIYA
As one of control command input methods for functional electrical stimulation (FES) system, using the head movements was considered in this paper. In order to detect the head movements, we designed a prototype control command input device using acceleration sensors and verified its validity in experiments. The experimental results showed that the head movements in the lateral flexion and in the flexion/extension were highly detected and separated by the acceleration sensors.
Much has been said and written about the changes in analog IC technology such as shrinking line widths, vanishingly low supply voltages, severe power limitations, and digital noise. But beyond these technology changes and their subsequent methodology changes, a far more subtle revolution is happening in the nature of the profession itself. Technology, software, and product evolution have all conspired to create a new kind of analog IC designer, one very different from the IC designers of the past.
Naiwala Pathirannehelage CHANDRASIRI Takeshi NAEMURA Hiroshi HARASHIMA
This paper discusses recognition up to intensities of mix of primary facial expressions in real time. The proposed recognition method is compatible with the MPEG-4 high level expression Facial Animation Parameter (FAP). In our method, the whole facial image is considered as a single pattern without any block segmentation. As model features, an expression vector, viz. low global frequency coefficient (DCT) changes relative to neutral facial image of a person is used. These features are robust and good enough to deal with real time processing. To construct a person specific model, apex images of primary facial expression categories are utilized as references. Personal facial expression space (PFES) is constructed by using multidimensional scaling. PFES with its generalization capability maps an unknown input image relative to known reference images. As PFES possesses linear mapping characteristics, MPEG-4 high level expression FAP can be easily calculated by the location of the input face on PFES. Also, temporal variations of facial expressions can be seen on PFES as trajectories. Experimental results are shown to demonstrate the effectiveness of the proposed method.
Keijiro HIRAHARA Toshio FUJII Koji ISHIDA Satoshi ISHIHARA
An optical communications technology roadmap leading up to the second decade of the 21st century has been investigated to provide a future vision of the optoelectronic technology in 15 to 20 years. The process whereby technology may progress toward the realization of the vision is indicated. A transmission rate of 100 Mbps for homes and a rate of 5 Tbps for the backbone network will be required in the first decade of the 21 century. Two technology roadmaps for public and business communications networks are discussed. It is concluded both WDM and TDM technology will be required to realize such an ultra-high capacity transmission. Technical tasks for various optical devices are investigated in detail.