Cong-Nguyen BUI Hae-Yeoun LEE Jeong-Chun JOO Heung-Kyu LEE
A secure method for steganography is proposed. Pixel-value differencing (PVD) steganography and bit-plane complexity segmentation (BPCS) steganography have the weakness of generating blocky effects and noise in smooth areas and being detectable with steganalysis. To overcome these weaknesses, a secure bit-plane based steganography method on the spatial domain is presented, which uses a robust measure to select noisy blocks for embedding messages. A matrix embedding technique is also applied to reduce the change of cover images. Given that the statistical property of cover images is well preserved in stego-images, the proposed method is undetectable by steganalysis that uses RS analysis or histogram-based analysis. The proposed method is compared with the PVD and BPCS steganography methods. Experimental results confirm that the proposed method is secure against potential attacks.
Yasushi TAKANO Takuya OKAMOTO Tatsuya TAKAGI Shunro FUKE
Initial growth of GaP on Si substrates using metalorganic vapor phase epitaxy was studied. Si substrates were exposed to PH3 preflow for 15 s or 120 s at 830 after they were preheated at 925. Atomic force microscopy (AFM) revealed that the Si surface after preflow for 120 s was much rougher than that after preflow for 15 s. After 1.5 nm GaP deposition on the Si substrates at 830, GaP islands nucleated more uniformly on the Si substrate after preflow for 15 s than on the substrate after preflow for 120 s. After 3 nm GaP deposition, layer structures were observed on a fraction of Si surface after preflow for 15 s. Island-like structures remained on the Si surface after preflow for 120 s. After 6 nm GaP deposition, the continuity of GaP layers improved on both substrates. However, AFM shows pits that penetrated a Si substrate with preflow for 120 s. Transmission electron microscopy of a GaP layer on the Si substrate after preflow for 120 s revealed that V-shaped pits penetrated the Si substrate. The preflow for a long time roughened the Si surface, which facilitated the pit formation during GaP growth in addition to degrading the surface morphology of GaP at the initial growth stage. Even after 50 nm GaP deposition, pits with a density on the order of 107 cm-2 remained in the sample. A 50-nm-thick flat GaP surface without pits was achieved for the sample with PH3 preflow for 15 s. The PH3 short preflow is necessary to produce a flat GaP surface on a Si substrate.
Takuya OHZONO Hirosato MONOBE Yo SHIMIZU
The self-organized microwrinkles can serve as a surface alignment layer to align nematic liquid crystals, which is primarily based on the groove mechanism. The azimuthal anchoring energy is discussed and estimated from the groove topography and the actual twist angle in the twisted nematic cell.
Yangwoo ROH Jaesub KIM Kyu Ho PARK
Applications usually have their own phases in heap memory usage. The traditional garbage collector fails to match various application phases because the same heuristic on the object behavior is used throughout the entire execution. This paper introduces a phase-adaptive garbage collector which reorganizes the heap layout and adjusts the invocation time of the garbage collection according to the phases. The proposed collector identifies phases by detecting the application methods strongly related to the phase boundaries. The experimental results show that the proposed phase-adaptive collector successfully recognizes application phases and improves the garbage collection time by as much as 41%.
Self-Organizing Map (SOM) is a powerful tool for the exploratory of clustering methods. Clustering is the most important task in unsupervised learning and clustering validity is a major issue in cluster analysis. In this paper, a new clustering validity index is proposed to generate the clustering result of a two-level SOM. This is performed by using the separation rate of inter-cluster, the relative density of inter-cluster, and the cohesion rate of intra-cluster. The clustering validity index is proposed to find the optimal numbers of clusters and determine which two neighboring clusters can be merged in a hierarchical clustering of a two-level SOM. Experiments show that, the proposed algorithm is able to cluster data more accurately than the classical clustering algorithms which is based on a two-level SOM and is better able to find an optimal number of clusters by maximizing the clustering validity index.
Hiroki SUGANO Takahiko MASUZAKI Hiroshi TSUTSUI Takao ONOYE Hiroyuki OCHI Yukihiro NAKAMURA
The encoding/decoding process of JPEG2000 requires much more computation power than that of conventional JPEG mainly due to the complexity of the entropy encoding/decoding. Thus usually multiple entropy codec hardware modules are implemented in parallel to process the entropy encoding/decoding. This module, however, requests many small-size memories to store intermediate data, and when multiple modules are implemented on a chip, employment of the large number of SRAMs increases difficulty of whole chip layout. In this paper, an efficient memory organization framework for the entropy encoding/decoding module is proposed, in which not only existing memory organizations but also our proposed novel memory organization methods are attempted to expand the design space to be explored. As a result, the efficient memory organization for a target process technology can be explored.
Takashi OHKUBO Kazuhiro TOKUNAGA Tetsuo FURUKAWA
This paper presents an efficient algorithm for large-scale multi-system learning task. The proposed architecture, referred to as the 'RBF×SOM', is based on the SOM2, that is, a'SOM of SOMs'. As is the case in the modular network SOM (mnSOM) with multilayer perceptron modules (MLP-mnSOM), the aim of the RBF×SOM is to organize a continuous map of nonlinear functions representing multi-class input-output relations of the given datasets. By adopting the algorithm for the SOM2, the RBF×SOM generates a map much faster than the original mnSOM, and without the local minima problem. In addition, the RBF×SOM can be applied to more difficult cases, that were not easily dealt with by the MLP-mnSOM. Thus, the RBF×SOM can deal with cases in which the probability density of the inputs is dependent on the classes. This tends to happen more often as the input dimension increases. The RBF×SOM therefore, overcomes many of the problems inherent in the MLP-mnSOM, and this is crucial for application to large scale tasks. Simulation results with artificial datasets and a meteorological dataset confirm the performance of the RBF×SOM.
This paper describes an analysis of the effects of electric field on nerve cells by using the Hodgkin-Huxley model. When evaluating our model, which combines an additional ionic current source and generated membrane potential, we derive the peak-to-peak value, the accumulated square of variation, and Kolmogorov-Sinai (KS) entropy of the cell-membrane potential excited by 10, 100, 1 k, and 10 kHz-sinusoidal electric fields. In addition, to obtain a comprehensive view of the time-variation patterns of our model, we used a self-organizing map, which provides a way to map high-dimensional data onto a low-dimensional domain. Simulation results confirmed that lower-frequency electric fields tended to increase fluctuations of the cell-membrane potential, and the additional ionic current source was a more dominant factor for fluctuations of the cell-membrane potential. On the basis of our model, we visually confirmed that the obtained data could be projected onto the map in accordance with responses of cell-membrane potential excited by electric fields, resulting in a combined depiction of the effects of KS entropy and other parameters.
Hideyuki OKITA Toshiharu MARUI Shinichi HOSHI Masanori ITOH Fumihiko TODA Yoshiaki MORINO Isao TAMAI Yoshiaki SANO Shohei SEKI
Current collapse phenomenon is a well known obstacle in the AlGaN/GaN HEMTs. In order to improve the surface stability of HEMTs, we have investigated the SiN passivation film deposited by T-CVD, and we found that it improves both gate leakage current and current collapse phenomenon [1]. Moreover, we compared the T-CVD and PE-CVD passivation films, on high electric field DC and RF characteristics. We found that T-CVD SiN passivation film improves BVds-off by 30% because of the reduction of gate leakage current. It also improved ηd in the output power characteristics by load-pull measurement, which indicates the decrease of the current collapse phenomenon. Also we fabricated a multi-fingered 50 W-class AlGaN/GaN HEMT with T-CVD SiN passivation film and achieved 61.2% of high drain efficiency at frequency of 2.14 GHz, which was 3.6 points higher than that with PE-CVD SiN passivation film.
Hironari CHIKAOKA Yoichi TAKAKUWA Kenji SHIOJIMA Masaaki KUZUHARA
We have evaluated the tunneling contact resistivity based on numerical calculation of tunneling current density across an AlGaN barrier layer in non-polar AlGaN/GaN heterostructures. In order to reduce the tunneling contact resistivity, we have introduced an n+-AlXGa1 - XN layer between an n +-GaN cap layer and an i-AlGaN barrier layer. The tunneling contact resistivity has been optimized by varying Al composition and donor concentration in n+-AlXGa1-XN. Simulation results show that the tunneling contact resistivity can be improved by as large as 4 orders of magnitude, compared to the standard AlGaN/GaN heterostructure.
Yongrui CUI Mingchu LI Yizhi REN Kouichi SAKURAI
A novel adaptive reputation-based virtual organization formation is proposed. It restrains the bad performers effectively based on the consideration of the global experience of the evaluator and evaluates the direct trust relation between two grid nodes accurately by consulting the previous trust value rationally. It also consults and improves the reputation evaluation process in PathTrust model by taking account of the inter-organizational trust relationship and combines it with direct and recommended trust in a weighted way, which makes the algorithm more robust against collusion attacks. Additionally, the proposed algorithm considers the perspective of the VO creator and takes required VO services as one of the most important fine-grained evaluation criterion, which makes the algorithm more suitable for constructing VOs in grid environments that include autonomous organizations. Simulation results show that our algorithm restrains the bad performers and resists against fake transaction attacks and badmouth attacks effectively. It provides a clear advantage in the design of a VO infrastructure.
Shu-Ling SHIEH I-En LIAO Kuo-Feng HWANG Heng-Yu CHEN
This paper proposes an efficient self-organizing map algorithm based on reference point and filters. A strategy called Reference Point SOM (RPSOM) is proposed to improve SOM execution time by means of filtering with two thresholds T1 and T2. We use one threshold, T1, to define the search boundary parameter used to search for the Best-Matching Unit (BMU) with respect to input vectors. The other threshold, T2, is used as the search boundary within which the BMU finds its neighbors. The proposed algorithm reduces the time complexity from O(n2) to O(n) in finding the initial neurons as compared to the algorithm proposed by Su et al. [16] . The RPSOM dramatically reduces the time complexity, especially in the computation of large data set. From the experimental results, we find that it is better to construct a good initial map and then to use the unsupervised learning to make small subsequent adjustments.
Atsuo MICHIUE Takashi MIYOSHI Tokuya KOZAKI Tomoya YANAMOTO Shin-ichi NAGAHAMA Takashi MUKAI
We fabricated high-power pure blue laser diodes (LDs) by using GaN-based material for full-color laser display. The operating output power, voltage and wall-plug efficiency of the LDs at forward current of 1.0 A were 1.17 W, 4.81 V and 24.3%, respectively. The estimated lifetime of the LDs was over 30,000 hours under continuous-wave operation.
We have recently developed a method for feature extraction from multivariate data using an analogue of Kuramoto's dynamics for modeling collective synchronization in a network of coupled phase oscillators. In our method, which we call data synchronization, phase oscillators carrying multivariate data in their natural and updated rhythms achieve partial synchronizations. Their common rhythms are interpreted as the template vectors representing the general features of the data set. In this study, we discuss the link of data synchronization to the self-organizing map algorithm as a popular method for data mining and show through numerical experiments how our method can overcome the disadvantages of the self-organizing map algorithm in that unintentional selections of inappropriate reference vectors lead to false feature patterns.
The complex-valued self-organizing map (CSOM) realizes an adaptive distinction between plastic landmines and other objects in landmine visualization systems. However, when the spatial resolution in electromagnetic-wave measurement is not sufficiently high, the distinction sometimes fails. To solve this problem, in this paper, we propose two techniques to enhance the visualization ability. One is the utilization of SOM-space topology in the CSOM adaptive classification. The other is a novel feature extraction method paying attention to local correlation in the frequency domain. In experimental results, we find that these two techniques significantly improve the visualization performance. The local-correlation method contributes also to the reduction of the number of tuning parameters in the CSOM classification.
Masaaki IIZUKA Hiroshi YAMAUCHI Kazuhiro KUDO
The control of the organic field-effect transistor characteristics is necessary to produce the integrated circuits using organic semiconductors. Variations in the poly (3-hexylthiophene) field-effect transistor characteristics upon post-treatment such as thermal treatment and voltage treatment in N2 atmosphere have been investigated. The controllability and reproducibility of the threshold voltage and mobility were achieved as a result of the post-treatments.
Takaaki MANAKA Motoharu NAKAO Eunju LIM Mitsumasa IWAMOTO
Time-resolved microscopic optical second harmonic generation (TRM-SHG) imaging measurement revealed quantitatively the potential drop at the electrode contact of pentacene field effect transistors (FET). An activation of the SH signal at the edge of Ag-source electrode indicates the presence of large potential drop at pentacene-Ag contact during device operation, whereas negligible potential drop was observed at pentacene-Au contact. These findings agree with the injection characteristics of electrodes owing to the relationship between the work function of the metal and the HOMO level of pentacene.
Tatsunari HAMASAKI Taichiro MORIMUNE Hirotake KAJII Yutaka OHMORI
The characteristics of violet-sensitive organic photodetectors (OPDs) utilizing polyalkylfluorene and triplet materials have been studied as a host and a dopant material, respectively. For the photo absorption layer, poly(9,9-dioctylfluorene) [PFO] and a phosphorescent iridium complex (Iridium (III) bis(2-(4,6-difluorophenyl)pyridinato-N,C2) [FIrpic] or Iridium (III) bis(2-(2'-benzothienyl)pyridinato-N,C3')(acetyl-acetonate) [(btp)2Ir(acac)]) were used as a host and a dopant material, respectively. PFO: (btp)2Ir(acac) device showed less photocurrent than PFO device because (btp)2Ir(acac) enhances recombination of the photo generated carriers in the photo absorption layer. On the other hand, PFO : FIrpic device showed larger photocurrent than PFO device due to triplet energy transfer from FIrpic to PFO. A cutoff frequency of 20 MHz was observed using a sinusoidal modulated violet laser light illumination under the reverse bias of 8 V.
Hiroyuki IECHI Yasuyuki WATANABE Hiroshi YAMAUCHI Kazuhiro KUDO
We fabricated both thin film transistors (TFTs) and diodes using zinc oxide (ZnO) and pentacene, and investigated their basic characteristics. We found that field-effect mobility is influenced by the interface state between the semiconductor and dielectric layers. Furthermore, the complementary metal oxide semiconductor (CMOS) inverter using a p-channel pentacene field-effect transistor (FET) and an n-channel ZnO FET showed a relatively high voltage gain (8-12) by optimizing the device structure. The hybrid complementary inverters described here are expected for application in flexible displays, radio frequency identification cards (RFID) tags, and others.
Hiroshi YAMAUCHI Yasuyuki WATANABE Masaaki IIZUKA Masakazu NAKAMURA Kazuhiro KUDO
Organic static induction transistor (OSIT) is a promising driving device for the displays, since it shows high-speed, high-power and low-voltage operation. In this study, the OSIT with fine gate electrode patterned by electron beam exposure were fabricated. We investigated the basic electrical characteristics of copper phthalocyanine OSIT and compared with the calculation results obtained by two-dimensional (2D) device simulator. The experimental results show that the gate modulation improved by reducing the electrode gap and on/off current ratio depends on the gate gap.