The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] I/O interface(5hit)

1-5hit
  • Comparative Performance Analysis of I/O Interfaces on Different NVMe SSDs in a High CPU Contention Scenario Open Access

    SeulA LEE  Jiwoong PARK  

     
    LETTER-Software System

      Pubricized:
    2024/03/18
      Vol:
    E107-D No:7
      Page(s):
    898-900

    This paper analyzes performance differences between interrupt-based and polling-based asynchronous I/O interfaces in high CPU contention scenarios. It examines how the choice of I/O Interface can differ depending on the performance of NVMe SSDs, particularly when using PCIe 3.0 and PCIe 4.0-based SSDs.

  • Dual-Level LVDS Technique for Reducing Data Transmission Lines by Half in LCD Driver IC's

    Doo-Hwan KIM  Sung-Hyun YANG  Kyoung-Rok CHO  

     
    PAPER-Electronic Circuits

      Vol:
    E91-C No:1
      Page(s):
    72-80

    This paper proposes a dual-level low voltage differential signaling (DLVDS) circuit aimed at low power consumption and reducing transmission lines for LCD driver IC's. We apply two-bit binary data to the DLVDS circuit as inputs, and then the circuit converts these two inputs into two kinds of fully differential signal levels. In the DLVDS circuit, two transmission lines are sufficient to transfer two-bit binary inputs while keeping the conventional LVDS features. The receiver recovers the original two-bit binary data through a level decoding circuit. The proposed circuit was fabricated using a commercial 0.25 µm CMOS technology. Under a 2.5 V supply voltage, the circuit shows a data rate of 1-Gbps/2-line and power consumption of 35 mW.

  • A Decision Feedback Equalizing Receiver for the SSTL SDRAM Interface with Clock-Data Skew Compensation

    Young-Soo SOHN  Seung-Jun BAE  Hong-June PARK  Soo-In CHO  

     
    PAPER-Integrated Electronics

      Vol:
    E87-C No:5
      Page(s):
    809-817

    A CMOS DFE (decision feedback equalization) receiver with a clock-data skew compensation was implemented for the SSTL (stub-series terminated logic) SDRAM interface. The receiver consists of a 2 way interleaving DFE input buffer for ISI reduction and a X2 over-sampling phase detector for finding the optimum sampling clock position. The measurement results at 1.2 Gbps operation showed the increase of voltage margin by about 20% and the decrease of time jitter in the recovered sampling clock by about 40% by equalization in an SSTL channel with 2 pF 4 stub load. Active chip area and power consumption are 3001000 µm2 and 142 mW, respectively, with a 2.5 V, 0.25 µm CMOS process.

  • Trends in High-Speed DRAM Architectures

    Masaki KUMANOYA  Toshiyuki OGAWA  Yasuhiro KONISHI  Katsumi DOSAKA  Kazuhiro SHIMOTORI  

     
    INVITED PAPER

      Vol:
    E79-C No:4
      Page(s):
    472-481

    Various kinds of new architectures have been proposed to enhance operating performance of the DRAM. This paper reviews these architectures including EDO, SDRAM, RDRAM, EDRAM, and CDRAM. The EDO slightly modifies the output control of the conventional DRAM architecture. Other innovative architectures try to enhance the performance by taking advantage of DRAM's internal multiple bits architecture with internal pipeline, parallel-serial conversion, or static buffers/on-chip cache. A quantitative analysis based on an assumption of wait cycles was made to compare PC system performance with some architectures. The calculation indicated the effectiveness of external or on-chip cache. Future trends cover high-speed I/O interface, unified memory architecture, and system integrated memory. The interface includes limited I/O swing such as HSTL and SSTL to realize more than 100MHz operation. Also, Ramlink and SyncLink are briefly reviewed as candidates for next generation interface. Unified memory architecture attempts to save total memory capacity by combining graphics and main memory. Advanced device technology enables system integration which combine system logic and memory. It suggests one potential direction towards system on a chip in the future.

  • Small-Amplitude Bus Drive and Signal Transmission Technology for High-Speed Memory-CPU Bus Systems

    Tatsuo KOIZUMI  Seiichi SAITO  

     
    INVITED PAPER

      Vol:
    E76-C No:11
      Page(s):
    1582-1588

    Computing devices have reached data frequencies of 100 MHz, and have created a need for small-amplitude impedance-matched buses. We simulated signal transmission characteristics of two basic driver circuits, push-pull and open-drain,for a synchronous DRAM I/O bus. The push-pull driver caused less signal distortion with parasitic inductance and capacitance of packages, and thus has higher frequency limits than the open-drain GTL type. We describe a bus system using push-pull drivers which operates at over 125 MHz. The bus line is 70 cm with 8 I/O loads distributed along the line, each having 25 nH7pF parasitic inductance and capacitance.