The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] IR(5768hit)

5761-5768hit(5768hit)

  • LIBRA: Automatic Performance-Driven Layout for Analog LSIs

    Tomohiko OHTSUKA  Hiroaki KUNIEDA  Mineo KANEKO  

     
    PAPER

      Vol:
    E75-C No:3
      Page(s):
    312-321

    This paper describes a new approach towards the performance-driven layout for analog LSIs. Based on our approach, we developed an automatic performance-driven layout system LIBRA. The performance-driven layout has an advantage that numerical evaluations of performance requirements may exactly specify layout requirements so that a better layout result will be expected with regard to both the size and the performances. As the first step to the final goal, we only concern with the DC characteristics of analog circuits affected by the placement and routing. First of all, LIBRA performs the sensitivity analysis with respect to process parameters and wire parasitics, which are major causes for DC performance deviations of analog LSIs, so as to describe every perfomance deviation by its first order approximation. Based on the estimations of those performance deviations, LIBRA designs the placement of devices. The placement approach here is the simulated annealing method driven by their circuit performance specification. The routing of inter-cell wires is performed according to the priority of the larger total wire sensitivities in the net by the maze router. Then, the simple compaction eliminates the empty space as much as possible. After that, the power lines optimization is performed so as to minimize the ferformance deviations. Finally, an advantage of the performance improvement by our approach is demonstrated by showing a layout result of a practical bipolar circuit and its excellent performance evaluations.

  • Mechanism of Electromagnetic Radiation from a Transmission Line

    Yoshio KAMI  

     
    INVITED PAPER

      Vol:
    E75-B No:3
      Page(s):
    115-123

    Mechanism for radiation phenomenon caused by a finite-length transmission line is discussed. Coupling of an external wave to a transmission line has been studied by using a circuit concept because of a TEM transmission. Since the relationship between coupling and radiation is reciprocal, radiation can be treated by using the circuit concept. It is shown that the equations obtained by using the field theory are quite coincident with those by the circuit theory. From the resultant, it can be concluded that the radiated fields are composed of those by the line current of TEM and the terminal currents. A method for an application of the circuit concept to radiation due to a trace on a printed circuit board is studied by comparing the experimental results.

  • Hierarchical Decomposition and Latency for Circuit Simulation by Direct Method

    Masakatsu NISHIGAKI  Nobuyuki TANAKA  Hideki ASAI  

     
    LETTER

      Vol:
    E75-A No:3
      Page(s):
    347-351

    For the efficient circuit simulation by the direct method, network tearing and latency techniques have been studied. This letter describes a circuit simulator SPLIT with hierarchical decomposition and latency. The block size of the latent subcircuit can be determined dynamically in SPLIT. We apply SPLIT to the MOS circuit simulation and verify its availability.

  • Classes of Arithmetic Circuits Capturing the Complexity of Computing the Determinant

    Seinosuke TODA  

     
    PAPER

      Vol:
    E75-D No:1
      Page(s):
    116-124

    In this paper, some classes of arithmetic circuits are introduced that capture the computational complexity of computing the determinant of matrices with entries either indeterminates or constants from a field. An arithmetic circuit is just like a Boolean circuit, except that all AND and OR gates (with fan-in two) are replaced by gates realizing a multiplication and an addition, respectively, of two polynomials over some indeterminates with coefficients from the field, and the circuit computes a (formal multivariate) polynomial in the obvious sense. An arithmetic circuit is said to be skew if at least one of the inputs of each multiplication gate is either an indeterminate or a constant. Then it is shown that for all square matrices M of dimension q, the determinant of M can be computed by a skew arithmetic circuit of (q20) gates, and is shown that for all skew arithmetic circuits C of size q, the polynomial computed by C can be defined as the determinant of a square matrix M of dimension (q). Thus the size of skew arithmetic circuit is polynomially related to the dimension of square matrices when it is considered to represent multivariate polynomials in both arithmetic circuits and the determinant. The results are extended to some other classes of arithmetic circuits less restricted than skew ones, and by using such an extended result, a difference and a similarity are demonstrated between polynomials represented as the determinant of matrix of relatively small dimension and those polynomials computed by arithmetic formulas and arithmetic circuits of relatively small size and degree.

  • A Study of Line Spectrum Pair Frequency Representation for Speech Recognition

    Fikret S. GURGEN  Shigeki SAGAYAMA  Sadaoki FURUI  

     
    PAPER-Speech

      Vol:
    E75-A No:1
      Page(s):
    98-102

    This paper investigates the performance of the line spectrum pair (LSP) frequency parameter representation for speech recognition. Transitional parameters of LSP frequencies are defined using first-order regression coefficients. The transitional and the instantaneous frequency parameters are linearly combined to generate a single feature vector used for recognition. The performance of the single vector is compared with that of the cepstral coefficients (CC) representation using a minimumdistance classifier in speaker-independent isolated word recognition experiments. In the speech recognition experiments, the transitional and the instantaneous coefficients are also combined in the distance domain. Also, inverse variance weighted Euclidean measures are defined using LSP frequencies to achieve Mel-scale-like warping and the new warped-frequencies are used in recognition experiments. The performance of the single feature vector defined with transitional and instantaneous LSP frequencies is found to be the best among the measures used in the experiments.

  • Low Dimensional Quantum Effects in Semiconductor Lasers

    Yasuhiko ARAKAWA  

     
    INVITED PAPER

      Vol:
    E75-C No:1
      Page(s):
    18-25

    Several issues on semiconductor lasers with low dimensional quantum systems are discussed. First, described are fabrication techniques for quantum wire and box structures, particularly a selective growth MOCVD growth technique which have been recently developed. Using this technique, we obtained 20 nm15 nm triangular-shaped quantum wire structures. Next, we investigate band structures of the quantum wires having strain effects, including lasing characteristics of quantum wire lasers with the strain effects. Finally we discuss importance to control both the electron wave mode and the optical wave mode for future high performance lasers, which leads to the concept of quantum micro-lasers. In order to demonstrate possibility to control the spontaneous mode in the laser cavity, an experimental result is shown on enhancement and inhibition effects of the spontaneous emission mode in a vertical cavity laser having two kinds of the quantum well.

  • On Depth-Bounded Planar Circuits

    Masao IKEKAWA  

     
    PAPER

      Vol:
    E75-D No:1
      Page(s):
    110-115

    We study the depth of planar Boolean circuits. We show that planar Boolean circuits of depth D(n) are simulated by on-line Turing machines in space O(D(n)). From this relationship, it is shown that any planar circuit for computing integer multiplication requires linear depth. It is also shown that a planar analogue to the NC-hierarchy is properly separated.

  • Low Dimensional Quantum Effects in Semiconductor Lasers

    Yasuhiko ARAKAWA  

     
    INVITED PAPER

      Vol:
    E75-A No:1
      Page(s):
    20-27

    Several issues on semiconductor lasers with low dimensional quantum systems are discussed. First, described are fabrication techniques for quantum wire and box structures, particularly a selective growth MOCVD growth technique which have been recently developed. Using this technique, we obtained 20 nm 15 nm triangular-shaped quantum wire structures. Next, we investigate band structures of the quantum wires having strain effects, including lasing characteristics of quantum wire lasers with the strain effects. Finally we discuss importance to control both the electron wave mode and the optical wave mode for future high performance lasers, which leads to the concept of quantum micro-lasers. In order to demonstrate possibility to control the spontaneous mode in the laser cavity, an experimental result is shown on enhancement and inhibition effects of the spontaneous emission mode in a vertical cavity laser having two kinds of the quantum well.

5761-5768hit(5768hit)