The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] OADM(18hit)

1-18hit
  • Real-Time Experiment and Numerical Analysis of Highly-Survivable Adaptive Restoration for High-Capacity Optical Signal Transmission Open Access

    Hiroki KAWAHARA  Kohei SAITO  Masahiro NAKAGAWA  Takashi KUBO  Takeshi SEKI  Takeshi KAWASAKI  Hideki MAEDA  

     
    PAPER-Transmission Systems and Transmission Equipment for Communications

      Pubricized:
    2020/09/28
      Vol:
    E104-B No:4
      Page(s):
    360-369

    An optical-layer adaptive restoration scheme is validated by a real-time experiment and numerical analyses. In this paper, it is assumed that this scheme can adaptively optimize the bitrate (up to 600Gb/s) and an optical reach with 100Gb/s granularity to maintain high-capacity optical signal transmission. The practicality of 600-Gb/s/carrier optical signal transmission over 101.6-km field-installed fiber is confirmed prior to the adaptive restoration experiment. After modifying the field setup, a real-time experiment on network recovery is demonstrated with bitrate adaptation for 600-Gb/s to 400-Gb/s signals. The results indicate that this scheme can restore failed connections with recovery times comparable to those of conventional restoration scheme; thus 99.9999% system availability can be easily attained even under double-link failures. Numerical analysis clarifies that adaptive restoration can recover >80% of double-link failures on several realistic topologies and improvement amount against conventional scheme is semi-statistically characterized by restoration path length.

  • Assessment of Optical Node Architectures for Building Next Generation Large Bandwidth Networks Open Access

    Mungun-Erdene GANBOLD  Takuma YASUDA  Yojiro MORI  Hiroshi HASEGAWA  Fumikazu INUZUKA  Akira HIRANO  Ken-ichi SATO  

     
    PAPER-Network

      Pubricized:
    2019/12/20
      Vol:
    E103-B No:6
      Page(s):
    679-689

    We analyze the cost of networks consisting of optical cross-connect nodes with different architectures for realizing the next generation large bandwidth networks. The node architectures include wavelength granular and fiber granular optical routing cross-connects. The network cost, capital expenditure (CapEx), involves link cost and node cost, both of which are evaluated for different scale networks under various traffic volumes. Numerical experiments demonstrate that the subsystem modular architecture with wavelength granular routing yields the highest cost effectiveness over a wide range of parameter values.

  • Multi-Resolution State Roadmap Method for Trajectory Planning

    Yuichi TAZAKI  Jingyu XIANG  Tatsuya SUZUKI  Blaine LEVEDAHL  

     
    PAPER-Mathematical Systems Science

      Vol:
    E99-A No:5
      Page(s):
    954-962

    This research develops a method for trajectory planning of robotic systems with differential constraints based on hierarchical partitioning of a continuous state space. Unlike conventional roadmaps which is constructed in the configuration space, the proposed state roadmap also includes additional state information, such as velocity and orientation. A bounded domain of the additional state is partitioned into sub-intervals with multiple resolution levels. Each node of a state roadmap consists of a fixed position and an interval of additional state values. A valid transition is defined between a pair of nodes if any combination of additional states, within their respective intervals, produces a trajectory that satisfies a set of safety constraints. In this manner, a trajectory connecting arbitrary start and goal states subject to safety constraints can be obtained by applying a graph search technique on the state roadmap. The hierarchical nature of the state roadmap reduces the computational cost of roadmap construction, the required storage size of computed roadmaps, as well as the computational cost of path planning. The state roadmap method is evaluated in the trajectory planning examples of an omni-directional mobile robot and a car-like robot with collision avoidance and various types of constraints.

  • A Proposal of Cyclic Sleep Control Technique for Backup Resources in ROADM Systems to Reduce Power Consumption of Photonic Network

    Tomoyuki HINO  Hitoshi TAKESHITA  Kiyo ISHII  Junya KURUMIDA  Shu NAMIKI  Shigeru NAKAMURA  Akio TAJIMA  

     
    PAPER-Network System

      Vol:
    E97-B No:12
      Page(s):
    2698-2705

    We propose a cyclic sleep control technique for backup resources in reconfigurable optical add/drop multiplexer (ROADM) systems to simultaneously achieve power savings and high-speed recovery from failures. Processes to check the reliability of backup resources, backup transponders and paths, are also provided in the control technique. The proposed technique uses sleep mode where backup transponders are powered down to minimize power for power savings. At least one of the backup transponders is always activated after self-checking using the loopback fiber connection in the ROADM and it becomes a shared backup for working transponders to enable high-speed recovery from failures. This activated backup transponder is powered down again after the next transponder is activated. These state transitions are cyclically applied to each backup transponder. This “cyclic” aspect of operation enables network operators to continuously monitor the reliability for all backup resources with the sleep mode. The activated backup transponders at both ends of the path are used in checking the reliability of backup paths. Therefore, all backup resources, both transponders and paths, can be regularly checked with the sleep mode to ensure data are stably forwarded. We estimated the power consumption with this technique under various conditions and found a trade-off between power reduction and the recovery capabilities from failures. We achieved more than 34% power saving of backup transponders maintaining the failure recovery time within 50ms in experiments. Furthermore, we confirmed the reliability of backup paths in experiments using backup transponders with the cyclic sleep control technique. These results indicated that the proposed control technique is promising in dramatically and reliably reducing the power consumption of backup resources.

  • Prototype Highly Integrated 848 Transponder Aggregator Based on Si Photonics for Multi-Degree Colorless, Directionless, Contentionless Reconfigurable Optical Add/Drop Multiplexer

    Hitoshi TAKESHITA  Tomoyuki HINO  Kiyo ISHII  Junya KURUMIDA  Shu NAMIKI  Shigeru NAKAMURA  Shigeki TAKAHASHI  Akio TAJIMA  

     
    PAPER

      Vol:
    E96-C No:7
      Page(s):
    966-973

    Research and development of a multi-degree colorless, directionless and contentionless reconfigurable optical add-drop multiplexer (CDC-ROADM) has recently been attracting a lot of attention. A large-scale transponder aggregator (TPA) is indispensable for providing high-capacity flexible connections to optical networks. In this paper, we report our study of the requirements for the TPA, which is a key technology for achieving flexible optical networks. To meet the requirements, we have developed an 848 TPA prototype based on Si photonics technology. This prototype was made with a few 88 Si optical switches and designed to be used with a commercial ROADM system. The 88 Si optical switches are made by integrating 152 Mach Zehnder (MZ) Thermo Optoelectronic (TO) 22 optical switch elements. A double gate structure is introduced to achieve the high extinction ratio (ER) required for optical communication. To the best of our knowledge, this is the world's first Si-TPA that can be used with a commercial ROADM system. By evaluating the basic optical characteristics utilizing real-time 100 Gbps digital coherent detection as one of today's practical technologies and a 4.4 THz spectral bandwidth 20 Tbps super-channel with digital coherent detection, as a promising future technology, we have confirmed that our prototype Si-TPA has the potential for practical use and future extensibility.

  • Proposal of Stackable ROADM for Wavelength Transparent IP-over-CWDM Networks

    MD. NOORUZZAMAN  Yuichi HARADA  Osanori KOYAMA  Yutaka KATSUYAMA  

     
    LETTER-Fiber-Optic Transmission for Communications

      Vol:
    E91-B No:10
      Page(s):
    3330-3333

    A stackable reconfigurable optical add/drop multilplexer has been proposed to give wavelength transparency to IP-over-CWDM networks. It was clarified by experiments that the proposed structure was wavelength transparent.

  • Remote Control for ROADMs in IP-over-CWDM Networks

    Osanori KOYAMA  Michio HASHIMOTO  Akira UENO  Yutaka KATSUYAMA  

     
    LETTER-Fiber-Optic Transmission for Communications

      Vol:
    E91-B No:9
      Page(s):
    2991-2993

    Remote control scheme for the ROADMs (Reconfigurable Optical Add/Drop Multilplexers) were designed, and 3 sets of the ROADM were manufactured for use in IP-over-CWDM networks. The control performance was examined, and lightpaths could be reconfigured successfully by the control.

  • Future Direction and Roadmap of Concurrent System Technology

    Naoshi UCHIHIRA  

     
    INVITED PAPER

      Vol:
    E90-A No:11
      Page(s):
    2443-2448

    Recently, technology roadmaps have been actively constructed by various organizations such as governments, industry segments, academic societies and companies [1]. While the common basic purpose of these roadmaps is sharing common recognition of the technology among stakeholders, there exists a specific role for each organization. One of the important roles of academic societies is to show the directions in which society is moving. The IEICE technical group on Concurrent System Technology (CST) established in 1993 stands at a turning point and needs to move forward in new directions after more than a decade of activities and contributions. However, neither top-down (market-pull/requirements-pull) nor bottom-up (technology-push) roadmapping is suitable for CST because CST is a kind of systems engineering. This paper proposes a new technology roadmapping methodology (middle-up-down technology roadmapping) for systems engineering and shows three future directions of CST and one roadmap for service systems that integrate CST and services science.

  • On Constraints for Path Computation in Multi-Layer Switched Networks

    Bijan JABBARI  Shujia GONG  Eiji OKI  

     
    SURVEY PAPER-Traffic Engineering and Multi-Layer Networking

      Vol:
    E90-B No:8
      Page(s):
    1922-1927

    This paper considers optical transport and packet networks and discusses the constraints and solutions in computation of traffic engineering paths. We categorize the constraints into prunable or non-prunable classes. The former involves a simple metric which can be applied for filtering to determine the path. The latter requires a methodic consideration of more complicated network element attributes. An example of this type of constraints is path loss in which the metric can be evaluated only on a path basis, as opposed to simply applying the metric to the link. Another form of non-prunable constraint requires adaptation and common vector operation. Examples are the switching type adaptation and wavelength continuity, respectively. We provide possible solutions to cases with different classes of constraints and address the problem of path computation in support of traffic engineering in multi-layer networks where a set of constrains are concurrently present. The solutions include the application of channel graph and common vector to support switching type adaptation and label continuity, respectively.

  • Optical Signal-to-Noise Ratio Monitoring in Optical Transport Networks Using OXCs or Reconfigurable OADMs

    Ji Wook YOUN  Kyung Whan YEOM  Bheom Soon JOO  

     
    LETTER-Fiber-Optic Transmission for Communications

      Vol:
    E90-B No:5
      Page(s):
    1225-1227

    We propose and experimentally demonstrate a simple method for monitoring optical signal-to-noise ratio. The novel method can be used in the optical transport networks using optical cross-connects or reconfigurable optical add-drop multiplexers. OSNR is measured by monitoring the transmitted optical power and the reflected optical power from fiber Bragg grating. We have obtained OSNR with an error less than 0.8 dB.

  • λ-Ring System: An Application in Survivable WDM Networks of Interconnected Self-Healing Ring Systems

    Yasuhiro MIYAO  

     
    PAPER-Fiber-Optic Transmission

      Vol:
    E84-B No:6
      Page(s):
    1596-1604

    This paper proposes a λ-ring system that is a wavelength-based self-healing-ring application unlike ordinary fiber-based ones. To design survivable networks of interconnected such self-healing ring systems, a virtual mesh network scheme is used, in which wavelength assignment in virtual links can be considered according to the λ-ring-system or fiber-ring-system applications of the bidirectional wavelength-path switched architecture. Integer-programming-based design problems are then formulated that minimize the total fiber length in these self-healing-ring applications. Numerical examples show that the λ-ring-system application is always superior to 4-fiber and 2-fiber-ring-system applications and 1+1 end-to-end path protection.

  • A Realistically Architecture of WDM Ring Network Using OXC and OADM

    Masayuki KASHIMA  Naoki MINATO  Satoko KUTSUZAWA  Saeko OSHIBA  

     
    PAPER

      Vol:
    E83-B No:10
      Page(s):
    2253-2260

    A configuration capable of wavelength routing is indispensable in constructing an optical network that has the IP-over-WDM capability. A ring network based on WDM is one of the configurations that can make wavelength routing possible. As the nodes used to construct a WDM ring network, we have the optical ADM system (OADM) and optical cross connect system (OXC). In this paper, in order to make ring network realistic, we examined a wavelength routing way using the number of possible wavelengths and the number of Node-Connections. A wavelength routing way placement on a lattice letter logically, and the all paths forward by 1 hop or 2 hops. As the parameters for determining the number of nodes and the distance of transmission, we evaluated the deterioration resulting from coherent crosstalk and OSNR. As a result of evaluation, the number of node-passes for 1 hop transmission amounts to less than 20. In addition, when we made a test bed and made evaluations, the results almost coincided with theoretical values.

  • Optimal Design of Survivable Photonic Transport Networks of Interconnected WDM Self-Healing Ring Systems

    Yasuhiro MIYAO  Hiroyuki SAITO  

     
    PAPER

      Vol:
    E83-B No:10
      Page(s):
    2261-2269

    This paper proposes an optimal design scheme for photonic transport networks that interconnect multiple wavelength division multiplexing (WDM) self-healing ring systems by using optical cross connects (OXCs). To calculate the number of OXCs required in each hub to interconnect these ring systems, a virtual mesh network is generated, on which the route of each optical path (OP) going through multiple adjacent rings ("ring" is defined as circle in network topology) is determined based on a list of hubs. An integer-programming-based design problem is then formulated that minimizes the overall cost of facilities including OXCs as well as ring systems to accommodate a given demand. By solving this problem, we can simultaneously optimize required number of ring systems in each ring, wavelength assignment within each individual bidirectional ring system, required number of OXCs in each hub, and capacity to be allocated to each OP. Numerical examples show that the ring-based network is more cost-effective than the mesh restorable network when the cost of an OADM is lower than that of an OXC, and the OXC-to-fiber cost-coefficient ratio is sufficiently large.

  • Flexible OADM Architecture and Its Impact on WDM Ring Evolution for Robust and Large-Scale Optical Transport Networks

    Naohide NAGATSU  Satoru OKAMOTO  Masafumi KOGA  Ken-ichi SATO  

     
    PAPER-Communication Networks

      Vol:
    E82-B No:8
      Page(s):
    1105-1114

    This paper discusses global area optical transport ring networks using wavelength division multiplexing (WDM) technologies and proposes a novel optical add/drop multiplexer (OADM) architecture suitable for such an application field. Study on the requirements of a global area ring application elucidates the appropriate ring/protection architecture as the path switched bi-directional ring. The proposed OADM architecture has flexibility in terms of path provisioning and scalability. We conclude that the proposed OADM can effectively configure the large-scale path switched bi-directional rings.

  • An Optical Add-Drop Multiplexer with a Grating-Loaded Directional Coupler in Silica Waveguides

    Naoki OFUSA  Takashi SAITO  Tsuyoshi SHIMODA  Tadahiko HANADA  Yutaka URINO  Mitsuhiro KITAMURA  

     
    INVITED PAPER-Optical Passive Devices and Modules

      Vol:
    E82-B No:8
      Page(s):
    1248-1251

    An optical add-drop multiplexer with a grating-loaded directional coupler in silica waveguides is demonstrated. The device for this configuration has a large fabrication tolerance and is small in size. A new scheme, in which the coupling length of the directional coupler is twice the complete coupling length, enables low cross-talk for both add and drop operations. This device is polarization-independent due to its relatively low-temperature process.

  • Flexible OADM Architecture and Its Impact on WDM Ring Evolution for Robust and Large-Scale Optical Transport Networks

    Naohide NAGATSU  Satoru OKAMOTO  Masafumi KOGA  Ken-ichi SATO  

     
    PAPER-Communication Networks

      Vol:
    E82-C No:8
      Page(s):
    1371-1380

    This paper discusses global area optical transport ring networks using wavelength division multiplexing (WDM) technologies and proposes a novel optical add/drop multiplexer (OADM) architecture suitable for such an application field. Study on the requirements of a global area ring application elucidates the appropriate ring/protection architecture as the path switched bi-directional ring. The proposed OADM architecture has flexibility in terms of path provisioning and scalability. We conclude that the proposed OADM can effectively configure the large-scale path switched bi-directional rings.

  • An Optical Add-Drop Multiplexer with a Grating-Loaded Directional Coupler in Silica Waveguides

    Naoki OFUSA  Takashi SAITO  Tsuyoshi SHIMODA  Tadahiko HANADA  Yutaka URINO  Mitsuhiro KITAMURA  

     
    INVITED PAPER-Optical Passive Devices and Modules

      Vol:
    E82-C No:8
      Page(s):
    1514-1517

    An optical add-drop multiplexer with a grating-loaded directional coupler in silica waveguides is demonstrated. The device for this configuration has a large fabrication tolerance and is small in size. A new scheme, in which the coupling length of the directional coupler is twice the complete coupling length, enables low cross-talk for both add and drop operations. This device is polarization-independent due to its relatively low-temperature process.

  • Optical Communications Technology Roadmap

    Keijiro HIRAHARA  Toshio FUJII  Koji ISHIDA  Satoshi ISHIHARA  

     
    SURVEY PAPER-Technology Roadmap

      Vol:
    E81-C No:8
      Page(s):
    1328-1341

    An optical communications technology roadmap leading up to the second decade of the 21st century has been investigated to provide a future vision of the optoelectronic technology in 15 to 20 years. The process whereby technology may progress toward the realization of the vision is indicated. A transmission rate of 100 Mbps for homes and a rate of 5 Tbps for the backbone network will be required in the first decade of the 21 century. Two technology roadmaps for public and business communications networks are discussed. It is concluded both WDM and TDM technology will be required to realize such an ultra-high capacity transmission. Technical tasks for various optical devices are investigated in detail.