The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] PA(8268hit)

2121-2140hit(8268hit)

  • Portfolio Selection Models with Technical Analysis-Based Fuzzy Birandom Variables

    You LI  Bo WANG  Junzo WATADA  

     
    PAPER-Fundamentals of Information Systems

      Vol:
    E97-D No:1
      Page(s):
    11-21

    Recently, fuzzy set theory has been widely employed in building portfolio selection models where uncertainty plays a role. In these models, future security returns are generally taken for fuzzy variables and mathematical models are then built to maximize the investment profit according to a given risk level or to minimize a risk level based on a fixed profit level. Based on existing works, this paper proposes a portfolio selection model based on fuzzy birandom variables. Two original contributions are provided by the study: First, the concept of technical analysis is combined with fuzzy set theory to use the security returns as fuzzy birandom variables. Second, the fuzzy birandom Value-at-Risk (VaR) is used to build our model, which is called the fuzzy birandom VaR-based portfolio selection model (FBVaR-PSM). The VaR can directly reflect the largest loss of a selected case at a given confidence level and it is more sensitive than other models and more acceptable for general investors than conventional risk measurements. To solve the FBVaR-PSM, in some special cases when the security returns are taken for trapezoidal, triangular or Gaussian fuzzy birandom variables, several crisp equivalent models of the FBVaR-PSM are derived, which can be handled by any linear programming solver. In general, the fuzzy birandom simulation-based particle swarm optimization algorithm (FBS-PSO) is designed to find the approximate optimal solution. To illustrate the proposed model and the behavior of the FBS-PSO, two numerical examples are introduced based on investors' different risk attitudes. Finally, we analyze the experimental results and provide a discussion of some existing approaches.

  • Key Length Estimation of Pairing-Based Cryptosystems Using ηT Pairing over GF(3n)

    Naoyuki SHINOHARA  Takeshi SHIMOYAMA  Takuya HAYASHI  Tsuyoshi TAKAGI  

     
    PAPER-Foundations

      Vol:
    E97-A No:1
      Page(s):
    236-244

    The security of pairing-based cryptosystems is determined by the difficulty of solving the discrete logarithm problem (DLP) over certain types of finite fields. One of the most efficient algorithms for computing a pairing is the ηT pairing over supersingular curves on finite fields of characteristic 3. Indeed many high-speed implementations of this pairing have been reported, and it is an attractive candidate for practical deployment of pairing-based cryptosystems. Since the embedding degree of the ηT pairing is 6, we deal with the difficulty of solving a DLP over the finite field GF(36n), where the function field sieve (FFS) is known as the asymptotically fastest algorithm of solving it. Moreover, several efficient algorithms are employed for implementation of the FFS, such as the large prime variation. In this paper, we estimate the time complexity of solving the DLP for the extension degrees n=97, 163, 193, 239, 313, 353, and 509, when we use the improved FFS. To accomplish our aim, we present several new computable estimation formulas to compute the explicit number of special polynomials used in the improved FFS. Our estimation contributes to the evaluation for the key length of pairing-based cryptosystems using the ηT pairing.

  • Double-Layer Plate-Laminated Waveguide Slot Array Antennas for a 39GHz Band Fixed Wireless Access System

    Miao ZHANG  Jiro HIROKAWA  Makoto ANDO  

     
    PAPER-Antennas and Propagation

      Vol:
    E97-B No:1
      Page(s):
    122-128

    A point-to-point fixed wireless access (FWA) system with a maximum throughput of 1Gbps has been developed in the 39GHz band. A double-layer plate-laminated waveguide slot array antenna is successfully realized with specific considerations of practical application. The antenna is designed so as to hold the VSWR under 1.5. The antenna input as well as feeding network is configured to reduce the antenna profile as well as the antenna weight. In addition, integrating the antenna into a wireless terminal is taken into account. A shielding wall, whose effectiveness is experimentally demonstrated, is set in the middle of the wireless terminal to achieve the spatial isolation of more than 65dB between two antennas on the H-plane. 30 test antennas are fabricated by diffusion bonding of thin metal plates, to investigate the tolerance and mass-productivity of this process. An aluminum antenna, which has the advantages of light weight and anti-aging, is also fabricated and evaluated with an eye to the future.

  • Blind CFO Estimation Based on Decision Directed MVDR Approach for Interleaved OFDMA Uplink Systems

    Chih-Chang SHEN  Ann-Chen CHANG  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E97-B No:1
      Page(s):
    137-145

    This paper deals with carrier frequency offset (CFO) estimation based on the minimum variance distortionless response (MVDR) criterion without using specific training sequences for interleaved orthogonal frequency division multiple access (OFDMA) uplink systems. In the presence of large CFOs, the estimator is proposed to find a new CFO vector based on the first-order Taylor series expansion of the one initially given. The problem of finding the new CFO vector is formulated as the closed form of a generalized eigenvalue problem, which allows one to readily solve it. Since raising the accuracy of residual CFO estimation can provide more accurate residual CFO compensation, this paper also present a decision-directed MVDR approach to improve the CFO estimation performance. However, the proposed estimator can estimate CFOs with less computation load. Several computer simulation results are provided for illustrating the effectiveness of the proposed blind estimate approach.

  • Comprehensive Study of Integral Analysis on LBlock

    Yu SASAKI  Lei WANG  

     
    PAPER-Symmetric Key Based Cryptography

      Vol:
    E97-A No:1
      Page(s):
    127-138

    The current paper presents an integral cryptanalysis in the single-key setting against light-weight block-cipher LBlock reduced to 22 rounds. Our attack uses the same 15-round integral distinguisher as the previous attacks, but many techniques are taken into consideration in order to achieve comprehensive understanding of the attack; choosing the best balanced-byte position, meet-in-the-middle technique to identify right key candidates, partial-sum technique, relations among subkeys, and combination of the exhaustive search with the integral analysis. Our results indicate that the integral cryptanalysis is particularly useful for LBlock like structures. At the end of this paper, which factor makes the LBlock structure weak against the integral cryptanalysis is discussed. Because designing light-weight cryptographic primitives is an actively discussed topic, we believe that this paper returns some useful feedback to future designs.

  • An Exact Approach for GPC-Based Compressor Tree Synthesis

    Taeko MATSUNAGA  Shinji KIMURA  Yusuke MATSUNAGA  

     
    PAPER-Logic Synthesis, Test and Verification

      Vol:
    E96-A No:12
      Page(s):
    2553-2560

    Multi-operand adders that calculate the summation of more than two operands usually consist of compressor trees, which reduce the number of operands to two without any carry propagation, and carry-propagate adders for the two operands in the ASIC implementation. Compressor trees that consist of full adders and half adders cannot be implemented efficiently on LUT-based FPGAs, and carry-chains or dedicated structures have been utilized to produce multi-operand adders on FPGAs. Recent studies indicate that compressor trees can be implemented efficiently on LUTs using Generalized Parallel Counters (GPCs) as the building blocks of compressor trees. This paper addresses the problem of synthesizing compressor trees based on GPCs. Based on the observation that characteristics such as the area, power, and delay correlate roughly to the total number and the maximum level of GPCs, the target problem can be regarded as a minimization problem for the total number of GPCs and the maximum levels of the GPCs, for which an ILP-based approach is proposed. The key point of our formulation is not to model the problem based on the structures of compressor trees like the existing approach, but instead the compression process itself is used to reduce the number of variables and constraints in the ILP formulation. The experimental results demonstrate the advantage of our formulation in terms of the quality and runtime.

  • Multiple-Shot Person Re-Identification by Pairwise Multiple Instance Learning

    Chunxiao LIU  Guijin WANG  Xinggang LIN  

     
    LETTER-Image Recognition, Computer Vision

      Vol:
    E96-D No:12
      Page(s):
    2900-2903

    Learning an appearance model for person re-identification from multiple images is challenging due to the corrupted images caused by occlusion or false detection. Furthermore, different persons may wear similar clothes, making appearance feature less discriminative. In this paper, we first introduce the concept of multiple instance to handle corrupted images. Then a novel pairwise comparison based multiple instance learning framework is proposed to deal with visual ambiguity, by selecting robust features through pairwise comparison. We demonstrate the effectiveness of our method on two public datasets.

  • Time Shift Parameter Setting of Temporal Decorrelation Source Separation for Periodic Gaussian Signals

    Takeshi AMISHIMA  Kazufumi HIRATA  

     
    PAPER-Sensing

      Vol:
    E96-B No:12
      Page(s):
    3190-3198

    Temporal Decorrelation source SEParation (TDSEP) is a blind separation scheme that utilizes the time structure of the source signals, typically, their periodicities. The advantage of TDSEP over non-Gaussianity based methods is that it can separate Gaussian signals as long as they are periodic. However, its shortcoming is that separation performance (SEP) heavily depends upon the values of the time shift parameters (TSPs). This paper proposes a method to automatically and blindly estimate a set of TSPs that achieves optimal SEP against periodic Gaussian signals. It is also shown that, selecting the same number of TSPs as that of the source signals, is sufficient to obtain optimal SEP, and adding more TSPs does not improve SEP, but only increases the computational complexity. The simulation example showed that the SEP is higher by approximately 20dB, compared with the ordinary method. It is also shown that the proposed method successfully selects just the same number of TSPs as that of incoming signals.

  • Pixel and Patch Reordering for Fast Patch Selection in Exemplar-Based Image Inpainting

    Baeksop KIM  Jiseong KIM  Jungmin SO  

     
    LETTER-Image Processing and Video Processing

      Vol:
    E96-D No:12
      Page(s):
    2892-2895

    This letter presents a scheme to improve the running time of exemplar-based image inpainting, first proposed by Criminisi et al. In the exemplar-based image inpainting, a patch that contains unknown pixels is compared to all the patches in the known region in order to find the best match. This is very time-consuming and hinders the practicality of Criminisi's method to be used in real time. We show that a simple bounding algorithm can significantly reduce number of distance calculations, and thus the running time. Performance of the bounding algorithm is affected by the order of patches that are compared, as well as the order of pixels in a patch. We present pixel and patch ordering schemes that improve the performance of bounding algorithms. Experiments with well-known images used in inpainting literature show that the proposed reordering scheme can reduce running time of the bounding algorithm up to 50%.

  • On the Dependence of Error Performance of Spatially Coupled LDPC Codes on Their Design Parameters

    Hiroyuki IHARA  Tomoharu SHIBUYA  

     
    LETTER-Coding Theory

      Vol:
    E96-A No:12
      Page(s):
    2447-2451

    Spatially coupled (SC) low-density parity-check (LDPC) codes are defined by bipartite graphs that are obtained by assembling prototype graphs. The combination and connection of prototype graphs are designated by specifying some parameters, and Kudekar et al. showed that BP threshold of the ensemble of SC LDPC codes agrees with MAP threshold of the ensemble of regular LDPC codes when those parameters are grown up so that the code length tends to infinity. When we design SC LDPC codes with practical code length, however, it is not clear how to set those parameters to enhance the performance of SC LDPC codes. In this paper, we provide the result of numerical experiments that suggest the dependence of error performance of SC LDPC codes over BEC on their design parameters.

  • A Rectangular Weighting Function Approximating Local Phase Error for Designing Equiripple All-Pass IIR Filters

    Taisaku ISHIWATA  Yoshinao SHIRAKI  

     
    PAPER-Signal Processing

      Vol:
    E96-A No:12
      Page(s):
    2398-2404

    In this paper, we propose a rectangular weighting function that can be used in the method of iteratively reweighted least squares (IRWLS) for designing equiripple all-pass IIR filters. The purpose of introducing this weighting function is to improve the convergence performance in the solution of the IRWLS. The height of each rectangle is designed to be equal to the local maximum of each ripple, and the width of each rectangle is designed so that the area of each rectangle becomes equal to the area of each ripple. Here, the ripple is the absolute value of the phase error. We show experimentally that the convergence performance in the solution of the IRWLS can be improved by using the proposed weighting function.

  • A 5.83pJ/bit/iteration High-Parallel Performance-Aware LDPC Decoder IP Core Design for WiMAX in 65nm CMOS

    Xiongxin ZHAO  Zhixiang CHEN  Xiao PENG  Dajiang ZHOU  Satoshi GOTO  

     
    PAPER-High-Level Synthesis and System-Level Design

      Vol:
    E96-A No:12
      Page(s):
    2623-2632

    In this paper, we propose a synthesizable LDPC decoder IP core for the WiMAX system with high parallelism and enhanced error-correcting performance. By taking the advantages of both layered scheduling and fully-parallel architecture, the decoder can fully support multi-mode decoding specified in WiMAX with the parallelism much higher than commonly used partial-parallel layered LDPC decoder architecture. 6-bit quantized messages are split into bit-serial style and 2bit-width serial processing lines work concurrently so that only 3 cycles are required to decode one layer. As a result, 12∼24 cycles are enough to process one iteration for all the code-rates specified in WiMAX. Compared to our previous bit-serial decoder, it doubles the parallelism and solves the message saturation problem of the bit-serial arithmetic, with minor gate count increase. Power synthesis result shows that the proposed decoder achieves 5.83pJ/bit/iteration energy efficiency which is 46.8% improvement compared to state-of-the-art work. Furthermore, an advanced dynamic quantization (ADQ) technique is proposed to enhance the error-correcting performance in layered decoder architecture. With about 2% area overhead, 6-bit ADQ can achieve the error-correcting performance close to 7-bit fixed quantization with improved error floor performance.

  • A GPU Implementation of Dynamic Programming for the Optimal Polygon Triangulation

    Yasuaki ITO  Koji NAKANO  

     
    PAPER

      Vol:
    E96-D No:12
      Page(s):
    2596-2603

    This paper presents a GPU (Graphics Processing Units) implementation of dynamic programming for the optimal polygon triangulation. Recently, GPUs can be used for general purpose parallel computation. Users can develop parallel programs running on GPUs using programming architecture called CUDA (Compute Unified Device Architecture) provided by NVIDIA. The optimal polygon triangulation problem for a convex polygon is an optimization problem to find a triangulation with minimum total weight. It is known that this problem for a convex n-gon can be solved using the dynamic programming technique in O(n3) time using a work space of size O(n2). In this paper, we propose an efficient parallel implementation of this O(n3)-time algorithm on the GPU. In our implementation, we have used two new ideas to accelerate the dynamic programming. The first idea (adaptive granularity) is to partition the dynamic programming algorithm into many sequential kernel calls of CUDA, and to select the best parameters for the size and the number of blocks for each kernel call. The second idea (sliding and mirroring arrangements) is to arrange the working data for coalesced access of the global memory in the GPU to minimize the memory access overhead. Our implementation using these two ideas solves the optimal polygon triangulation problem for a convex 8192-gon in 5.57 seconds on the NVIDIA GeForce GTX 680, while a conventional CPU implementation runs in 1939.02 seconds. Thus, our GPU implementation attains a speedup factor of 348.02.

  • Network Interface Architecture with Scalable Low-Latency Message Receiving Mechanism

    Noboru TANABE  Atsushi OHTA  

     
    PAPER

      Vol:
    E96-D No:12
      Page(s):
    2536-2544

    Most of scientists except computer scientists do not want to make efforts for performance tuning with rewriting their MPI applications. In addition, the number of processing elements which can be used by them is increasing year by year. On large-scale parallel systems, the number of accumulated messages on a message buffer tends to increase in some of their applications. Since searching message queue in MPI is time-consuming, system side scalable acceleration is needed for those systems. In this paper, a support function named LHS (Limited-length Head Separation) is proposed. Its performance in searching message buffer and hardware cost are evaluated. LHS accelerates searching message buffer by means of switching location to store limited-length heads of messages. It uses the effects such as increasing hit rate of cache on host with partial off-loading to hardware. Searching speed of message buffer when the order of message reception is different from the receiver's expectation is accelerated 14.3 times with LHS on FPGA-based network interface card (NIC) named DIMMnet-2. This absolute performance is 38.5 times higher than that of IBM BlueGene/P although the frequency is 8.5times slower than BlueGene/P. LHS has higher scalability than ALPU in the performance per frequency. Since these results are obtained with partially on loaded linear searching on old Pentium®4, performance gap will increase using state of art CPU. Therefore, LHS is more suitable for larger parallel systems. The discussions for adopting proposed method to state of art processors and systems are also presented.

  • Optimal Parallel Algorithms for Computing the Sum, the Prefix-Sums, and the Summed Area Table on the Memory Machine Models

    Koji NAKANO  

     
    PAPER

      Vol:
    E96-D No:12
      Page(s):
    2626-2634

    The main contribution of this paper is to show optimal parallel algorithms to compute the sum, the prefix-sums, and the summed area table on two memory machine models, the Discrete Memory Machine (DMM) and the Unified Memory Machine (UMM). The DMM and the UMM are theoretical parallel computing models that capture the essence of the shared memory and the global memory of GPUs. These models have three parameters, the number p of threads, and the width w of the memory, and the memory access latency l. We first show that the sum of n numbers can be computed in $O({nover w}+{nlover p}+llog n)$ time units on the DMM and the UMM. We then go on to show that $Omega({nover w}+{nlover p}+llog n)$ time units are necessary to compute the sum. We also present a parallel algorithm that computes the prefix-sums of n numbers in $O({nover w}+{nlover p}+llog n)$ time units on the DMM and the UMM. Finally, we show that the summed area table of size $sqrt{n} imessqrt{n}$ can be computed in $O({nover w}+{nlover p}+llog n)$ time units on the DMM and the UMM. Since the computation of the prefix-sums and the summed area table is at least as hard as the sum computation, these parallel algorithms are also optimal.

  • Apps at Hand: Personalized Live Homescreen Based on Mobile App Usage Prediction

    Xiao XIA  Xinye LIN  Xiaodong WANG  Xingming ZHOU  Deke GUO  

     
    LETTER-Information Network

      Vol:
    E96-D No:12
      Page(s):
    2860-2864

    To facilitate the discovery of mobile apps in personal devices, we present the personalized live homescreen system. The system mines the usage patterns of mobile apps, generates personalized predictions, and then makes apps available at users' hands whenever they want them. Evaluations have verified the promising effectiveness of our system.

  • An Efficient O(1) Contrast Enhancement Algorithm Using Parallel Column Histograms

    Yan-Tsung PENG  Fan-Chieh CHENG  Shanq-Jang RUAN  

     
    LETTER

      Vol:
    E96-D No:12
      Page(s):
    2724-2725

    Display devices play image files, of which contrast enhancement methods are usually employed to bring out visual details to achieve better visual quality. However, applied to high resolution images, the contrast enhancement method entails high computation costs mostly due to histogram computations. Therefore, this letter proposes a parallel histogram calculation algorithm using the column histograms and difference histograms to reduce histogram computations. Experimental results show that the proposed algorithm is effective for histogram-based image contrast enhancement.

  • A Practical and Optimal Path Planning for Autonomous Parking Using Fast Marching Algorithm and Support Vector Machine

    Quoc Huy DO  Seiichi MITA  Keisuke YONEDA  

     
    PAPER-Artificial Intelligence, Data Mining

      Vol:
    E96-D No:12
      Page(s):
    2795-2804

    This paper proposes a novel practical path planning framework for autonomous parking in cluttered environments with narrow passages. The proposed global path planning method is based on an improved Fast Marching algorithm to generate a path while considering the moving forward and backward maneuver. In addition, the Support Vector Machine is utilized to provide the maximum clearance from obstacles considering the vehicle dynamics to provide a safe and feasible path. The algorithm considers the most critical points in the map and the complexity of the algorithm is not affected by the shape of the obstacles. We also propose an autonomous parking scheme for different parking situation. The method is implemented on autonomous vehicle platform and validated in the real environment with narrow passages.

  • Nonlinear Metric Learning with Deep Independent Subspace Analysis Network for Face Verification

    Xinyuan CAI  Chunheng WANG  Baihua XIAO  Yunxue SHAO  

     
    PAPER-Image Recognition, Computer Vision

      Vol:
    E96-D No:12
      Page(s):
    2830-2838

    Face verification is the task of determining whether two given face images represent the same person or not. It is a very challenging task, as the face images, captured in the uncontrolled environments, may have large variations in illumination, expression, pose, background, etc. The crucial problem is how to compute the similarity of two face images. Metric learning has provided a viable solution to this problem. Until now, many metric learning algorithms have been proposed, but they are usually limited to learning a linear transformation. In this paper, we propose a nonlinear metric learning method, which learns an explicit mapping from the original space to an optimal subspace using deep Independent Subspace Analysis (ISA) network. Compared to the linear or kernel based metric learning methods, the proposed deep ISA network is a deep and local learning architecture, and therefore exhibits more powerful ability to learn the nature of highly variable dataset. We evaluate our method on the Labeled Faces in the Wild dataset, and results show superior performance over some state-of-the-art methods.

  • Improving Cache Partitioning Algorithms for Pseudo-LRU Policies

    Xi ZHANG  Chuanyi LIU  Zhenyu LIU  Dongsheng WANG  

     
    PAPER

      Vol:
    E96-D No:12
      Page(s):
    2514-2523

    As the number of concurrently running applications on the chip multiprocessors (CMPs) is increasing, efficient management of the shared last-level cache (LLC) is crucial to guarantee overall performance. Recent studies have shown that cache partitioning can provide benefits in throughput, fairness and quality of service. Most prior arts apply true Least Recently Used (LRU) as the underlying cache replacement policy and rely on its stack property to work properly. However, in commodity processors, pseudo-LRU policies without stack property are commonly used instead of LRU for their simplicity and low storage overhead. Therefore, this study sets out to understand whether LRU-based cache partitioning techniques can be applied to commodity processors. In this work, we instead propose a cache partitioning mechanism for two popular pseudo-LRU policies: Not Recently Used (NRU) and Binary Tree (BT). Without the help of true LRU's stack property, we propose a profiling logic that applies curve approximation methods to derive the hit curve (hit counts under varied way allocations) for an application. We then propose a hybrid partitioning mechanism, which mitigates the gap between the predicted hit curve and the actual statistics. Simulation results demonstrate that our proposal can improve throughput by 15.3% on average and outperforms the stack-estimate proposal by 12.6% on average. Similar results can be achieved in weighted speedup. For the cache configurations under study, it requires less than 0.5% storage overhead compared to the last-level cache. In addition, we also show that profiling mechanism with only one true LRU ATD achieves comparable performance and can further reduce the hardware cost by nearly two thirds compared with the hybrid mechanism.

2121-2140hit(8268hit)