The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] PAPR(91hit)

21-40hit(91hit)

  • Joint Optimization of Peak-to-Average Power Ratio and Spectral Leakage in NC-OFDM

    Peng WEI  Lilin DAN  Yue XIAO  Shaoqian LI  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2016/06/21
      Vol:
    E99-B No:12
      Page(s):
    2592-2599

    High peak-to-average power ratio (PAPR) and spectral leakage are two main problems of orthogonal frequency division multiplexing (OFDM) systems. For alleviating the above problems, this paper proposes a joint model which efficiently suppresses both PAPR and spectral leakage, by combining serial peak cancellation (SPC) and time-domain N-continuous OFDM (TD-NC-OFDM) in an iterative way. Furthermore, we give an analytical expression of the proposed joint model to analyze the mutual effects between SPC and TD-NC-OFDM. Lastly, simulation results also support that the joint optimization model can obtain notable PAPR reduction and sidelobe suppression performance with low implementation cost.

  • Low PAPR Signal Design for CIOD Using Selected and Clipped QAM Signal

    Ho Kyoung LEE  Changjoong KIM  Seo Weon HEO  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E99-B No:5
      Page(s):
    1143-1150

    Coordinate interleaved orthogonal design (CIOD) using four transmit antennas provides full diversity, full rate (FDFR) properties with low decoding complexity. However, the constellation expansion due to the coordinate interleaving of the rotated constellation results in peak to average power ratio (PAPR) increase. In this paper, we propose two signal constellation design methods which have low PAPR. In the first method we propose a signal constellation by properly selecting the signal points among the expanded square QAM constellation points, based on the co-prime interleaving of the first coordinate signal. We design a regular interleaving pattern so that the coordinate distance product (CPD) after the interleaving becomes large to get the additional coding gain. In the other method we propose a novel constellation with low PAPR based on the clipping of the rotated square QAM constellation. Our proposed signal constellations show much lower PAPR than the ordinary rotated QAM constellations for CIOD.

  • An Efficient Selection Method of a Transmitted OFDM Signal Sequence for Various SLM Schemes

    Kee-Hoon KIM  Hyun-Seung JOO  Jong-Seon NO  Dong-Joon SHIN  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E99-B No:3
      Page(s):
    703-713

    Many selected mapping (SLM) schemes have been proposed to reduce the peak-to-average power ratio (PAPR) of orthogonal frequency division multiplexing (OFDM) signal sequences. In this paper, an efficient selection (ES) method of the OFDM signal sequence with minimum PAPR among many alternative OFDM signal sequences is proposed; it supports various SLM schemes. Utilizing the fact that OFDM signal components can be sequentially generated in many SLM schemes, the generation and PAPR observation of the OFDM signal sequence are processed concurrently. While the u-th alternative OFDM signal components are being generated, by applying the proposed ES method, the generation of that alternative OFDM signal components can be interrupted (or stopped) according to the selection criteria of the best OFDM signal sequence in the considered SLM scheme. Such interruption substantially reduces the average computational complexity of SLM schemes without degradation of PAPR reduction performance, which is confirmed by analytical and numerical results. Note that the proposed method is not an isolated SLM scheme but a subsidiary method which can be easily adopted in many SLM schemes in order to further reduce the computational complexity of considered SLM schemes.

  • Analysis of Oversampling Effect on Selected Mapping Scheme Using CORR Metric

    Jun-Young WOO  Kee-Hoon KIM  Kang-Seok LEE  Jong-Seon NO  Dong-Joon SHIN  

     
    PAPER-Transmission Systems and Transmission Equipment for Communications

      Vol:
    E99-B No:2
      Page(s):
    364-369

    It is known that in the selected mapping (SLM) scheme for orthogonal frequency division multiplexing (OFDM), correlation (CORR) metric outperforms the peak-to-average power ratio (PAPR) metric in terms of bit error rate (BER) performance. It is also well known that four times oversampling is used for estimating the PAPR performance of continuous OFDM signal. In this paper, the oversampling effect of OFDM signal is analyzed when CORR metric is used for the SLM scheme in the presence of nonlinear high power amplifier. An analysis based on the correlation coefficients of the oversampled OFDM signals shows that CORR metric of two times oversampling in the SLM scheme is good enough to achieve the same BER performance as four times and 16 times oversampling cases. Simulation results confirm that for the SLM scheme using CORR metric, the BER performance for two times oversampling case is almost the same as that for four and 16 times oversampling cases.

  • A Low-Complexity PTS Scheme with the Hybrid Subblock Partition Method for PAPR Reduction in OFDM Systems

    Sheng-Ju KU  Yuan OUYANG  Chiachi HUANG  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E98-B No:11
      Page(s):
    2341-2347

    The technique of partial transmit sequences (PTS) is effective in reducing the peak-to-average power ratio (PAPR) of orthogonal frequency division multiplexing (OFDM) signals. However, the conventional PTS (CPTS) scheme has high computation complexity because it needs several inverse fast Fourier transform (IFFT) units and an optimization process to find the candidate signal with the lowest PAPR. In this paper, we propose a new low-complexity PTS scheme for OFDM systems, in which a hybrid subblock partition method (SPM) is used to reduce the complexity that results from the IFFT computations and the optimization process. Also, the PAPR reduction performance of the proposed PTS scheme is further enhanced by multiplying a selected subblock with a predefined phase rotation vector to form a new subblock. The time-domain signal of the new subblock can be obtained simply by performing a circularly-shift-left operation on the IFFT output of the selected subblock. Computer simulations show that the proposed PTS scheme achieves a PAPR reduction performance close to that of the CPTS scheme with the pseudo-random SPM, but with much lower computation complexity.

  • Excess-Bandwidth Transmit Filtering Based on Minimization of Variance of Instantaneous Transmit Power for Low-PAPR SC-FDE

    Amnart BOONKAJAY  Tatsunori OBARA  Tetsuya YAMAMOTO  Fumiyuki ADACHI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E98-B No:4
      Page(s):
    673-685

    Square-root Nyquist transmit filtering is typically used in single-carrier (SC) transmission. By changing the filter roll-off factor, the bit-error rate (BER), peak-to-average power ratio (PAPR), and spectrum efficiency (SE) changes, resulting in a tradeoff among these performance indicators. In this paper, assuming SC with frequency-domain equalization (SC-FDE), we design a new transmit filtering based on the minimum variance of instantaneous transmit power (VIP) criterion in order to reduce the PAPR of the transmit signal of SC-FDE. Performance evaluation of SC-FDE using the proposed transmit filtering is done by computer simulation, and shows that the proposed transmit filtering contributes lower transmit PAPR, while there exists only a small degradation in BER performance compared to SC-FDE using square-root Nyquist filtering.

  • Resource Block Assignment to Reduce Peak to Average Power Ratio in Multi-User OFDM

    Osamu TAKYU  Yohtaro UMEDA  Fumihito SASAMORI  Shiro HANDA  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E97-B No:8
      Page(s):
    1689-1700

    This paper proposes the assignment of resource blocks (RBs) to reduce the peak-to-average power ratio (PAPR) of orthogonal frequency division multiplexing (OFDM) in a multi-user OFDM system. This system ranks the users according to the channel state information (CSI) for RB assignment. In our proposed technique, an RB is assigned to either the first- or second-ranked mobile station (MS) to minimize the PAPR of the OFDM signal. While this process reduces the PAPR, the throughput is also reduced because of the user diversity gain loss. A PAPR-throughput tradeoff is then established. Theoretical analyses and computer simulations confirm that when the number of MSs becomes large, the PAPR-throughput tradeoff is eased because of the minimal effect of the diversity gain loss. Therefore, significant PAPR reduction is achieved with only a slight degradation in the throughput.

  • Joint Sequence Design for Robust Channel Estimation and PAPR Reduction for MIMO-OFDM Systems

    Chin-Te CHIANG  Carrson C. FUNG  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E96-B No:10
      Page(s):
    2693-2702

    A joint superimposed sequence design, known as SuperImposed sequence for PAPR Reduction, or SIPR, using per-tone affine precoding technique is proposed to jointly estimate MIMO-OFDM channels and reduce the peak-to-average power ratio (PAPR) for MIMO-OFDM systems. The proposed technique optimizes the trade-off between BER, MSE of the channel estimate, and PAPR reduction performance. Moreover, it does not require side information to be transmitted for the removal of the sequence at the receiver, and the transmit redundancy can be as small as 1 symbol/subcarrier. The superimposed sequence is designed by solving a convex quadratically constrained quadratic programming problem and has a computational complexity comparable to previous technique using linear programming. It is shown that SIPR can be regarded as a generalization of the popular tone reservation (TR) technique, and thus, is able to outperform TR in terms PAPR reduction performance, with less transmit overhead. Simulation results and transmit redundancy analysis of SIPR and TR are shown to illustrate the efficacy of the proposed scheme.

  • Clipping and Filtering-Based Adaptive PAPR Reduction Method for Precoded OFDM-MIMO Signals

    Yoshinari SATO  Masao IWASAKI  Shoki INOUE  Kenichi HIGUCHI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E96-B No:9
      Page(s):
    2270-2280

    This paper presents a new adaptive peak-to-average power ratio (PAPR) reduction method based on clipping and filtering (CF) for precoded orthogonal frequency division multiplexing (OFDM)-multiple-input multiple-output (MIMO) transmission. While the conventional CF method adds roughly the same interference power to each of the transmission streams, the proposed method suppresses the addition of interference power to the streams with good channel conditions. Since the sum capacity is dominated by the capacity of the streams under good channel conditions and the interference caused by the PAPR reduction process severely degrades the achievable capacity for these streams, the proposed method significantly improves the achievable sum capacity compared to the conventional CF method for a given PAPR. Simulation results show the capacity gain by using the proposed method compared to the conventional method.

  • Throughput/ACLR Performance of CF-Based Adaptive PAPR Reduction Method for Eigenmode MIMO-OFDM Signals with AMC

    Shoki INOUE  Teruo KAWAMURA  Kenichi HIGUCHI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E96-B No:9
      Page(s):
    2293-2300

    This paper proposes an enhancement to a previously reported adaptive peak-to-average power ratio (PAPR) reduction method based on clipping and filtering (CF) for eigenmode multiple-input multiple-output (MIMO) — orthogonal frequency division multiplexing (OFDM) signals. We enhance the method to accommodate the case with adaptive modulation and channel coding (AMC). Since the PAPR reduction process degrades the signal-to-interference and noise power ratio (SINR), the AMC should take into account this degradation before PAPR reduction to select accurately the modulation scheme and coding rate (MCS) for each spatial stream. We use the lookup table-based prediction of SINR after PAPR reduction, in which the interference caused by the PAPR reduction is obtained as a function of the stream index, frequency block index, clipping threshold for PAPR reduction, and input backoff (IBO) of the power amplifier. Simulation results show that the proposed PAPR reduction method increases the average throughput compared to the conventional CF method for a given adjacent channel leakage power ratio (ACLR) when we assume practical AMC.

  • Constant Amplitude Encoders and Decoders with Error Correction (EC) for CDMA Systems

    Suil KIM  Sukneung BAE  Junghwan KIM  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E96-B No:8
      Page(s):
    2131-2138

    Multicode CDMA systems convert a high-rate serial data stream into low-rate parallel data streams prior to transmission, but reducing the peak-to-average-power-ratio (PAPR) is a prerequisite. In this paper, we propose constant amplitude coding schemes with forward error correction (EC) capability. The proposed schemes overcome the adverse nonlinear effects of the high power amplifier (HPA) by using the transmitted signal of constant amplitude and parity channel. In the first scheme, we add the EC capability to the previously reported constant-amplitude rate 4/4 (Suil's) scheme, which can transmit data without energy loss. Next, we propose a rate 12/16 decoder with EC capability, which is slightly different from the previous work through the addition of EC capability. Lastly, we propose a new high-rate EC capable 16/16 scheme without energy loss, which makes it superior to the conventional 12/16 scheme which experiences excessive energy loss due to redundancy. Computer simulation results confirm that new 4/4 decoder along with 12/16 decoder and 16/16 encoder/decoder can effectively reduce the inherent problem of high PAPR in the multicode CDMA signal transmission. Our methods also yield better BER performance than other constant amplitude coding schemes.

  • PAPR Reduction for Systems Using SRRC Filters Based on Modified ACE

    Fang YANG  Keqian YAN  Changyong PAN  Jian SONG  

     
    LETTER-Communication Theory and Signals

      Vol:
    E96-A No:7
      Page(s):
    1675-1677

    Square root-raised-cosine (SRRC) filters are used in many systems for spectrum shaping, which leads to a high peak-to-average power ratio (PAPR). Nevertheless, some applications demand a low PAPR in terms of both the error performance and the strict restriction of the spectrum mask. In this letter, we propose a PAPR reduction method based on the modified active constellation extension for systems using SRRC filters. Results show that the proposed method substantially reduces the PAPR, and therefore it is applicable to satellite communications to improve the power efficiency at the transmitter.

  • Hybrid DCT/DST Precoding Scheme for the PAPR Reduction of OFDM Systems

    Soobum CHO  Sang Kyu PARK  

     
    LETTER

      Vol:
    E96-A No:1
      Page(s):
    296-297

    A new peak-to-average power ratio (PAPR) reduction scheme for orthogonal frequency division multiplexing (OFDM) is proposed based on the discrete cosine transform (DCT) and discrete sine transform (DST) precodings. Since the DCT and DST precodings concentrate energy into a few components, the hybrid application of the precodings to the real and imaginary parts of mapping symbols can significantly reduce the PAPR. Simulations show that the proposed scheme achieves significantly low PAPR without degrading the bit error rate (BER) compared to existing precoding schemes.

  • Low PAPR Precoding Design with Dynamic Channel Assignment for SCBT Communication Systems

    Juinn-Horng DENG  Sheng-Yang HUANG  

     
    LETTER-Transmission Systems and Transmission Equipment for Communications

      Vol:
    E95-B No:11
      Page(s):
    3580-3584

    The single carrier block transmission (SCBT) system has become one of the most popular modulation systems because of its low peak to average power ratio (PAPR). This work proposes precoding design on the transmitter side to retain low PAPR, improve performance, and reduce computational complexity on the receiver side. The system is designed according to the following procedure. First, upper-triangular dirty paper coding (UDPC) is utilized to pre-cancel the interference among multiple streams and provide a one-tap time-domain equalizer for the SCBT system. Next, to solve the problem of the high PAPR of the UDPC precoding system, Tomlinson-Harashima precoding (THP) is developed. Finally, since the UDPC-THP system is degraded by the deep fading channels, the dynamic channel on/off assignment by the maximum capacity algorithm (MCA) and minimum BER algorithm (MBA) is proposed to enhance the bit error rate (BER) performance. Simulation results reveal that the proposed precoding transceiver can provide excellent BER and low PAPR performances for the SCBT system over a multipath fading channel.

  • Effective PAPR Reduction Scheme for MIMO-OFDM System with Nonlinear High Power Amplifier

    Jung-In BAIK  Hyoung-Kyu SONG  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E95-B No:9
      Page(s):
    3028-3032

    The multiple-input multiple-output (MIMO)-Orthogonal frequency division multiplexing (OFDM) system has a serious drawback in that it has high peak-to-average power ratio (PAPR). Therefore, in this letter, we propose an effective PAPR reduction scheme for MIMO-OFDM systems with nonlinear high power amplifier (HPA). The proposed scheme very effectively reduces the PAPR through the adaptive nonlinear estimator (ANE) which estimates the MSE between the OFDM signals before and after the nonlinear HPA and the low probability of false side information (SI) by receive diversity.

  • Partial Transmit Sequence Scheme with Phase Factor Selection Algorithm in OFDM Systems

    Soobum CHO  Sang Kyu PARK  

     
    LETTER-Communication Theory and Signals

      Vol:
    E95-A No:6
      Page(s):
    1099-1102

    A partial transmit sequence with a clipping (PTS-Clipping) method can reduce considerably high peak-to-average power ratio (PAPR) of orthogonal frequency division multiplexing (OFDM) signal. However, exhaustive searching operations are needed in order to find optimal phase factors. Signal distortions also occur because the clipping is a nonlinear operation. In this letter, we propose a new partial transmit sequence (PTS) scheme using a phase factor selection algorithm with preset thresholds. The proposed scheme achieves considerable savings for determining the optimum phase factors without the signal distortions.

  • PAPR Reduction of TDD-CDMA Using Joint Transmission Technique

    Norharyati BINTI HARUM  Tomoaki OHTSUKI  Masao NAKAGAWA  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E95-B No:3
      Page(s):
    933-942

    Joint transmission (JT) in time-division-duplex code-division multiple-access (TDD-CDMA) systems can provide a low peak-to-average power ratio (PAPR) for single paths, but causing a high PAPR in multipath environments. To avoid the high PAPR, we propose a new approach to JT technique by selecting certain paths instead of all paths used in JT processing so that PAPR becomes lower. The path selection proposal involves two methods; path selection by taking certain paths from all paths and by taking paths having path gains above a certain threshold value. To enhance the effectiveness of the proposed techniques, we evaluate a combination of the proposed technique with the clipping technique. We evaluate both PAPR and bit error rate (BER) performance for the proposed techniques and its combination with the clipping technique. We compare the results of the proposed techniques with conventional JT technique and the combination techniques with clipping technique. From the results of computer simulation, we show that the proposed path selection techniques perform low PAPR and good BER performance compared to the conventional JT processing. We also show that the combination of proposed path selection technique and clipping performs low PAPR performance without severe BER degradation compared to the conventional clipping technique.

  • A Low PAPR Multiple Access Scheme for LTE-A

    Yan MENG  Gang LIU  Limin MENG  Jingyu HUA  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E94-B No:12
      Page(s):
    3618-3622

    In this letter, we propose two antenna grouping schemes for uplink Nx SC-FDMA MIMO systems, where the multiple component carriers can be divided into several groups which are handled by different antennas, thus the number of component carriers on each antenna will be reduced by the group method. As a result, the peak-to-average power ratio (PAPR) of each antenna has been reduced. To further enhance the performance, an interleaving method is proposed to achieve better diversity gain due to the channel varying in the spatial domain and the frequency domain during one turbo coded stream. Our simulation figures clearly demonstrate that in all examples, the proposed schemes are shown to be effective in improving the Block Error Rate (BLER) performance while reducing the PAPR.

  • An Improved Gradient-Based PAPR Reduction Method for Space Shift Keying (SSK)-OFDM Systems

    Ping YANG  Yue XIAO  Lilin DAN  Shaoqian LI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E94-B No:12
      Page(s):
    3532-3539

    Space shift keying (SSK), conveying data symbols via only the antenna indices, is a new modulation technique for low-complexity implementation of multiple-input multiple-output (MIMO) systems. SSK can be combined with the orthogonal frequency division multiplexing (OFDM) technique to improve the capacity and reliability of transmission. However, the SSK MIMO-OFDM systems also inherit from OFDM systems the drawback of a high peak-to-average power ratio (PAPR) of the transmitted signal. To overcome this problem, in this paper, the special information-conveying mode of SSK is utilized and a fast-converged gradient-based PAPR reduction method which exploits the phase freedom of the transmitted SSK MIMO-OFDM signal in the frequency domain is proposed. Simulation results show that the proposed improved gradient-based method (GBM) achieves a superior PAPR performance, as compared to the promising discrete phase set based schemes such as selected mapping method (SLM) and flipping method. Besides the considerable PAPR reduction, the improved GBM also enjoys other advantages such as low complexity, and neglectable performance loss.

  • Sequence Selection for Selected Mapping in OFDM

    Yue XIAO  Qihui LIANG  Peng CHENG  Lilin DAN  Shaoqian LI  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E94-B No:5
      Page(s):
    1495-1497

    Selected mapping (SLM) is a promising distortionless technique for controlling the high peak-to-average power ratio (PAPR) of orthogonal frequency division multiplexing (OFDM) systems. In SLM, phase sequence selection plays an important role for efficient PAPR reduction. Although some phase sequence sets have been proposed in past studies, we show that an optimal selection is still desired for the phase sequences from the same set. Therefore, this letter develops a measureable phase sequence selection criterion to optimally select the phase sequences from both the same and different sets, so as to achieve near optimum PAPR reduction performance in SLM-OFDM systems.

21-40hit(91hit)