The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] RIN(2923hit)

421-440hit(2923hit)

  • Localized Ranking in Social and Information Networks

    Joyce Jiyoung WHANG  Yunseob SHIN  

     
    LETTER-Artificial Intelligence, Data Mining

      Pubricized:
    2017/11/22
      Vol:
    E101-D No:2
      Page(s):
    547-551

    In social and information network analysis, ranking has been considered to be one of the most fundamental and important tasks where the goal is to rank the nodes of a given graph according to their importance. For example, the PageRank and the HITS algorithms are well-known ranking methods. While these traditional ranking methods focus only on the structure of the entire network, we propose to incorporate a local view into node ranking by exploiting the clustering structure of real-world networks. We develop localized ranking mechanisms by partitioning the graphs into a set of tightly-knit groups and extracting each of the groups where the localized ranking is computed. Experimental results show that our localized ranking methods rank the nodes quite differently from the traditional global ranking methods, which indicates that our methods provide new insights and meaningful viewpoints for network analysis.

  • Accurate Three-Dimensional Scattering Center Extraction for ISAR Image Using the Matched Filter-Based CLEAN Algorithm

    Dal-Jae YUN  Jae-In LEE  Ky-Ung BAE  Won-Young SONG  Noh-Hoon MYUNG  

     
    PAPER-Electromagnetic Analysis

      Pubricized:
    2017/08/22
      Vol:
    E101-B No:2
      Page(s):
    418-425

    Three-dimensional (3-D) scattering center models use a finite number of point scatterers to efficiently represent complex radar target signature. Using the CLEAN algorithm, 3-D scattering center model is extracted from the inverse synthetic aperture radar (ISAR) image, which is generated based on the shooting and bouncing ray (SBR) technique. The conventional CLEAN extracts the strongest peak iteratively based on the assumption that the scattering centers are isolated. In a realistic target, however, both interference from the closely spaced points and additive noise distort the extraction process. This paper proposes a matched filter-based CLEAN algorithm to improve accuracy efficiently. Using the matched filtering of which impulse response is the known point spread function (PSF), a point most correlated with the PSF is extracted. Thus, the proposed method optimally enhances the accuracy in the presence of massive distortions. Numerical simulations using canonical and realistic targets demonstrate that the extraction accuracy is improved without loss of time-efficiency compared with the existing CLEAN algorithms.

  • A Fuzzy Rule-Based Key Redistribution Method for Improving Security in Wireless Sensor Networks

    Jae Kwan LEE  Tae Ho CHO  

     
    PAPER-Fundamental Theories for Communications

      Pubricized:
    2017/07/27
      Vol:
    E101-B No:2
      Page(s):
    489-499

    Wireless Sensor Networks (WSNs) are randomly deployed in a hostile environment and left unattended. These networks are composed of small auto mouse sensor devices which can monitor target information and send it to the Base Station (BS) for action. The sensor nodes can easily be compromised by an adversary and the compromised nodes can be used to inject false vote or false report attacks. To counter these two kinds of attacks, the Probabilistic Voting-based Filtering Scheme (PVFS) was proposed by Li and Wu, which consists of three phases; 1) Key Initialization and assignment, 2) Report generation, and 3) En-route filtering. This scheme can be a successful countermeasure against these attacks, however, when one or more nodes are compromised, the re-distribution of keys is not handled. Therefore, after a sensor node or Cluster Head (CH) is compromised, the detection power and effectiveness of PVFS is reduced. This also results in adverse effects on the sensor network's lifetime. In this paper, we propose a Fuzzy Rule-based Key Redistribution Method (FRKM) to address the limitations of the PVFS. The experimental results confirm the effectiveness of the proposed method by improving the detection power by up to 13.75% when the key-redistribution period is not fixed. Moreover, the proposed method achieves an energy improvement of up to 9.2% over PVFS.

  • Statistical Property Guided Feature Extraction for Volume Data

    Li WANG  Xiaoan TANG  Junda ZHANG  Dongdong GUAN  

     
    LETTER-Pattern Recognition

      Pubricized:
    2017/10/13
      Vol:
    E101-D No:1
      Page(s):
    261-264

    Feature visualization is of great significances in volume visualization, and feature extraction has been becoming extremely popular in feature visualization. While precise definition of features is usually absent which makes the extraction difficult. This paper employs probability density function (PDF) as statistical property, and proposes a statistical property guided approach to extract features for volume data. Basing on feature matching, it combines simple liner iterative cluster (SLIC) with Gaussian mixture model (GMM), and could do extraction without accurate feature definition. Further, GMM is paired with a normality test to reduce time cost and storage requirement. We demonstrate its applicability and superiority by successfully applying it on homogeneous and non-homogeneous features.

  • BiometricJammer: Method to Prevent Acquisition of Biometric Information by Surreptitious Photography on Fingerprints Open Access

    Isao ECHIZEN  Tateo OGANE  

     
    INVITED PAPER

      Pubricized:
    2017/10/16
      Vol:
    E101-D No:1
      Page(s):
    2-12

    Advances in fingerprint authentication technology have led to it being used in a growing range of personal devices such as PCs and smartphones. However, they have also made it possible to capture fingerprints remotely with a digital camera, putting the target person at risk of illegal log-ins and identity theft. This article shows how fingerprint captured in this manner can be authenticated and how people can protect their fingerprints against surreptitious photography. First we show that photographed fingerprints have enough information to spoof fingerprint authentication systems by demonstrating with “fake fingers” made from such photographs. Then we present a method that defeats the use of surreptitious photography without preventing the use of legitimate fingerprint authentication devices. Finally, we demonstrate that an implementation of the proposed method called “BiometricJammer,” a wearable device put on a fingertip, can effectively prevent the illegal acquisition of fingerprints by surreptitious photography while still enabling contact-based fingerprint sensors to respond normally.

  • Universal Scoring Function Based on Bias Equalizer for Bias-Based Fingerprinting Codes

    Minoru KURIBAYASHI  Nobuo FUNABIKI  

     
    PAPER

      Vol:
    E101-A No:1
      Page(s):
    119-128

    The study of universal detector for fingerprinting code is strongly dependent on the design of scoring function. The optimal detector is known as MAP detector that calculates an optimal correlation score for a given single user's codeword. However, the knowledge about the number of colluders and their collusion strategy are inevitable. In this paper, we propose a new scoring function that equalizes the bias between symbols of codeword, which is called bias equalizer. We further investigate an efficient scoring function based on the bias equalizer under the relaxed marking assumption such that white Gaussian noise is added to a pirated codeword. The performance is compared with the MAP detector as well as some state-of-the-art scoring functions.

  • Construction of Zero Correlation Zone Sequence Sets over the 16-QAM Constellation

    Kai LIU  Panpan CHEN  

     
    LETTER-Coding Theory

      Vol:
    E101-A No:1
      Page(s):
    283-286

    Based on the known binary and quaternary zero correlation zone (ZCZ) sequence sets, a class of 16-QAM sequence sets with ZCZ is presented, where the term “QAM sequence” means the sequence over the quadrature amplitude modulation (QAM) constellation. The sequence sets obtained by this method achieve an expansion in the number of 16-QAM sequence sets with ZCZ. The proposed sequence sets can be applied to quasi-synchronous code division multiple access (QS-CDMA) systems to eliminate the multiple access interference (MAI) and multipath interference (MPI) and improve the transmission data rate (TDR).

  • Privacy-Preserving Fingerprint Authentication Resistant to Hill-Climbing Attacks

    Haruna HIGO  Toshiyuki ISSHIKI  Kengo MORI  Satoshi OBANA  

     
    PAPER

      Vol:
    E101-A No:1
      Page(s):
    138-148

    This paper proposes a novel secure biometric authentication scheme. The scheme deals with fingerprint minutiae as the biometric feature and the matching is checked by a widely used technique. To discuss security, we formalize the model of secure biometric authentication scheme by abstracting the related and proposed schemes. The schemes which satisfy all the proposed security requirements are guaranteed to prevent leakage of biometric information and impersonation. In particular, the definition captures well-known and practical attacks including replay attacks and hill-climbing attacks. We prove that the proposed scheme achieves all the requirements if the additive homomorphic encryption scheme used in the scheme satisfies some additional properties. As far as we know, the proposed scheme is the first one that satisfies all the requirements. Also, we show that modified Elgamal cryptosystem satisfies all the properties under the decisional Diffie-Hellman assumption.

  • Password-Based Authentication Protocol for Secret-Sharing-Based Multiparty Computation

    Ryo KIKUCHI  Koji CHIDA  Dai IKARASHI  Koki HAMADA  

     
    PAPER

      Vol:
    E101-A No:1
      Page(s):
    51-63

    The performance of secret-sharing (SS)-based multiparty computation (MPC) has recently increased greatly, and several efforts to implement and use it have been put into practice. Authentication of clients is one critical mechanism for implementing SS-based MPC successfully in practice. We propose a password-based authentication protocol for SS-based MPC. Our protocol is secure in the presence of secure channels, and it is optimized for practical use with SS-based MPC in the following ways. Threshold security: Our protocol is secure in the honest majority, which is necessary and sufficient since most practical results on SS-based MPC are secure in the same environment. Establishing distinct channels: After our protocol, a client has distinct secure and two-way authenticated channels to each server. Ease of implementation: Our protocol consists of SS, operations involving SS, and secure channels, which can be reused from an implementation of SS-based MPC. Furthermore, we implemented our protocol with an optimization for the realistic network. A client received the result within 2 sec even when the network delay was 200 ms, which is almost the delay that occurs between Japan and Europe.

  • Regular Expression Filtering on Multiple q-Grams

    Seon-Ho SHIN  HyunBong KIM  MyungKeun YOON  

     
    LETTER-Information Network

      Pubricized:
    2017/10/11
      Vol:
    E101-D No:1
      Page(s):
    253-256

    Regular expression matching is essential in network and big-data applications; however, it still has a serious performance bottleneck. The state-of-the-art schemes use a multi-pattern exact string-matching algorithm as a filtering module placed before a heavy regular expression engine. We design a new approximate string-matching filter using multiple q-grams; this filter not only achieves better space compactness, but it also has higher throughput than the existing filters.

  • Green's Function and Radiation over a Periodic Surface: Reciprocity and Reversal Green's Function

    Junichi NAKAYAMA  Yasuhiko TAMURA  

     
    PAPER-Electromagnetic Theory

      Vol:
    E101-C No:1
      Page(s):
    3-11

    This paper deals with the scattering of a cylindrical wave by a perfectly conductive periodic surface. This problem is equivalent to finding the Green's function G(x,z|xs,zs), where (x,z) and (xs,zs) are the observation and radiation source positions above the periodic surface, respectively. It is widely known that the Green's function satisfies the reciprocity: G(x,z|xs,zs)=G(xs,zs|x,z), where G(xs,zs|x,z) is named the reversal Green's function in this paper. So far, there is no numerical method to synthesize the Green's function with the reciprocal property in the grating theory. By combining the shadow theory, the reciprocity theorem for scattering factors and the average filter introduced previously, this paper gives a new numerical method to synthesize the Green's function with reciprocal property. The reciprocity means that any properties of the Green's function can be obtained from the reversal Green's function. Taking this fact, this paper obtains several new formulae on the radiation and scattering from the reversal Green's function, such as a spectral representation of the Green's function, an asymptotic expression of the Green's function in the far region, the angular distribution of radiation power, the total power of radiation and the relative error of power balance. These formulae are simple and easy to use. Numerical examples are given for a very rough periodic surface. Several properties of the radiation and scattering are calculated for a transverse magnetic (TM) case and illustrated in figures.

  • The Complexity of (List) Edge-Coloring Reconfiguration Problem

    Hiroki OSAWA  Akira SUZUKI  Takehiro ITO  Xiao ZHOU  

     
    PAPER-Algorithms and Data Structures

      Vol:
    E101-A No:1
      Page(s):
    232-238

    Let G be a graph such that each edge has its list of available colors, and assume that each list is a subset of the common set consisting of k colors. Suppose that we are given two list edge-colorings f0 and fr of G, and asked whether there exists a sequence of list edge-colorings of G between f0 and fr such that each list edge-coloring can be obtained from the previous one by changing a color assignment of exactly one edge. This problem is known to be PSPACE-complete for every integer k ≥ 6 and planar graphs of maximum degree three, but any computational hardness was unknown for the non-list variant in which every edge has the same list of k colors. In this paper, we first improve the known result by proving that, for every integer k ≥ 4, the problem remains PSPACE-complete even for planar graphs of bounded bandwidth and maximum degree three. Since the problem is known to be solvable in polynomial time if k ≤ 3, our result gives a sharp analysis of the complexity status with respect to the number k of colors. We then give the first computational hardness result for the non-list variant: for every integer k ≥ 5, the non-list variant is PSPACE-complete even for planar graphs of bandwidth quadratic in k and maximum degree k.

  • Generating Pairing-Friendly Elliptic Curves Using Parameterized Families

    Meng ZHANG  Maozhi XU  

     
    LETTER-Cryptography and Information Security

      Vol:
    E101-A No:1
      Page(s):
    279-282

    A new method is proposed for the construction of pairing-friendly elliptic curves. For any fixed embedding degree, it can transform the problem to solving equation systems instead of exhaustive searching, thus it's more targeted and efficient. Via this method, we obtain various families including complete families, complete families with variable discriminant and sparse families. Specifically, we generate a complete family with important application prospects which has never been given before as far as we know.

  • A Fast Computation Technique on the Method of Image Green's Function by a Spectral Domain Periodicity

    Yasuhiko TAMURA  

     
    PAPER-Electromagnetic Theory

      Vol:
    E101-C No:1
      Page(s):
    56-64

    This paper newly proposes a fast computation technique on the method of image Green's function for p-characteristic calculations, when a plane wave with the transverse wavenumber p is incident on a periodic rough surface having perfect conductivity. In the computation of p-characteristics, based on a spectral domain periodicity of the periodic image Green's function, the image integral equation for a given incidence p maintains the same form for other particular incidences except for the excitation term. By means of a quadrature method, such image integral equations lead to matrix equations. Once the first given matrix equation is performed by a solution procedure as calculations of its matrix elements and its inverse matrix, the other matrix equations for other particular incidences no longer need such a solution procedure. Thus, the total CPU time for the computation of p-characteristics is largely reduced in complex shaped surface cases, huge roughness cases or large period cases.

  • Scattering of a Beam Wave by the End-Face of an Ordered Waveguide System at Low Grazing Incidence

    Akira KOMIYAMA  

     
    BRIEF PAPER-Electromagnetic Theory

      Vol:
    E101-C No:1
      Page(s):
    48-51

    In the plane wave scattering from a periodic grating high order diffracted plane waves disappear at a low grazing angle limit of incidence. In this paper the scattering of a beam wave by the end-face of an ordered waveguide system composed of identical cores of equal space is treated by the perturbation method and the scattered field is analytically derived. The possibility that high order diffracted beam waves remain at a low grazing angle limit of incidence is shown.

  • An Efficient Acoustic Distance Rendering Algorithm for Proximity Control in Virtual Reality Systems

    Yonghyun BAEK  Tegyu LEE  Young-cheol PARK  

     
    LETTER-Digital Signal Processing

      Vol:
    E100-A No:12
      Page(s):
    3054-3060

    In this letter, we propose an acoustic distance rendering (ADR) algorithm that can efficiently create the proximity effect in virtual reality (VR) systems. By observing the variation of acoustic cues caused by the movement of the sound source in the near field, we develop a model that can closely approximates the near-field transfer function (NFTF). The developed model is used to efficiently compensate for the near-field effect on the head related transfer function (HRTF). The proposed algorithm is implemented and tested in the form of an audio plugin for a VR platform and the test results confirm the efficiency of the proposed algorithm.

  • On Asymptotically Good Ramp Secret Sharing Schemes

    Olav GEIL  Stefano MARTIN  Umberto MARTÍNEZ-PEÑAS  Ryutaroh MATSUMOTO  Diego RUANO  

     
    PAPER-Cryptography and Information Security

      Vol:
    E100-A No:12
      Page(s):
    2699-2708

    Asymptotically good sequences of linear ramp secret sharing schemes have been intensively studied by Cramer et al. in terms of sequences of pairs of nested algebraic geometric codes [4]-[8], [10]. In those works the focus is on full privacy and full reconstruction. In this paper we analyze additional parameters describing the asymptotic behavior of partial information leakage and possibly also partial reconstruction giving a more complete picture of the access structure for sequences of linear ramp secret sharing schemes. Our study involves a detailed treatment of the (relative) generalized Hamming weights of the considered codes.

  • Quantum Stabilizer Codes Can Realize Access Structures Impossible by Classical Secret Sharing

    Ryutaroh MATSUMOTO  

     
    LETTER-Cryptography and Information Security

      Vol:
    E100-A No:12
      Page(s):
    2738-2739

    We show a simple example of a secret sharing scheme encoding classical secret to quantum shares that can realize an access structure impossible by classical information processing with limitation on the size of each share. The example is based on quantum stabilizer codes.

  • A Class of Left Dihedral Codes Over Rings $mathbb{F}_q+umathbb{F}_q$

    Yuan CAO  Yonglin CAO  Jian GAO  

     
    PAPER-Coding Theory and Techniques

      Vol:
    E100-A No:12
      Page(s):
    2585-2593

    Let $mathbb{F}_q$ be a finite field of q elements, $R=mathbb{F}_q+umathbb{F}_q$ (u2=0) and D2n= be a dihedral group of order n. Left ideals of the group ring R[D2n] are called left dihedral codes over R of length 2n, and abbreviated as left D2n-codes over R. Let n be a positive factor of qe+1 for some positive integer e. In this paper, any left D2n-code over R is uniquely decomposed into a direct sum of concatenated codes with inner codes Ai and outer codes Ci, where Ai is a cyclic code over R of length n and Ci is a linear code of length 2 over a Galois extension ring of R. More precisely, a generator matrix for each outer code Ci is given. Moreover, a formula to count the number of these codes is obtained, the dual code for each left D2n-code is determined and all self-dual left D2n-codes over R are presented, respectively.

  • A Novel Robust Adaptive Beamforming Algorithm Based on Total Least Squares and Compressed Sensing

    Di YAO  Xin ZHANG  Qiang YANG  Weibo DENG  

     
    LETTER-Digital Signal Processing

      Vol:
    E100-A No:12
      Page(s):
    3049-3053

    An improved beamformer, which uses joint estimation of the reconstructed interference-plus-noise (IPN) covariance matrix and array steering vector (ASV), is proposed. It can mitigate the problem of performance degradation in situations where the desired signal exists in the sample covariance matrix and the steering vector pointing has large errors. In the proposed method, the covariance matrix is reconstructed by weighted sum of the exterior products of the interferences' ASV and their individual power to reject the desired signal component, the coefficients of which can be accurately estimated by the compressed sensing (CS) and total least squares (TLS) techniques. Moreover, according to the theorem of sequential vector space projection, the actual ASV is estimated from an intersection of two subspaces by applying the alternating projection algorithm. Simulation results are provided to demonstrate the performance of the proposed beamformer, which is clearly better than the existing robust adaptive beamformers.

421-440hit(2923hit)